Câu hỏi:
12/07/2023 495
Một tàu tuần tra đi ngược dòng 60 km, sau đó tàu đi xuôi dòng 48 km, trên cùng một dòng sông. Biết tốc độ của dòng nước là 2 km/h. Gọi x (km/h) là tốc độ của tàu tuần tra (x > 2). Viết phân thức biểu thị theo x:
a) Thời gian tàu tuần tra đi ngược dòng;
b) Thời gian tàu tuần tra đi xuôi dòng;
c) Hiệu giữa thời gian tàu tuần tra đi ngược dòng và thời gian tàu tuần tra đi xuôi dòng.
Một tàu tuần tra đi ngược dòng 60 km, sau đó tàu đi xuôi dòng 48 km, trên cùng một dòng sông. Biết tốc độ của dòng nước là 2 km/h. Gọi x (km/h) là tốc độ của tàu tuần tra (x > 2). Viết phân thức biểu thị theo x:
a) Thời gian tàu tuần tra đi ngược dòng;
b) Thời gian tàu tuần tra đi xuôi dòng;
c) Hiệu giữa thời gian tàu tuần tra đi ngược dòng và thời gian tàu tuần tra đi xuôi dòng.
Quảng cáo
Trả lời:
Lời giải
a) Do tốc độ tàu tuần tra đi ngược dòng là x ‒ 2 (km/h) nên phân thức biểu thị thời gian tàu tuần tra đi ngược dòng là: \(\frac{{60}}{{x - 2}}\) (giờ).
b) Do tốc độ tàu tuần tra đi xuôi dòng là x + 2 (km/h) nên phân thức biểu thị thời gian tàu tuần tra đi xuôi dòng là: \(\frac{{48}}{{x + 2}}\) (giờ).
c) Hiệu giữa thời gian tàu tuần tra đi ngược dòng và thời gian tàu tuần tra đi xuôi dòng là:
\(\frac{{60}}{{x - 2}} - \frac{{48}}{{x + 2}} = \frac{{60\left( {x + 2} \right) - 48\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{12x + 216}}{{{x^2} - 4}}\) (giờ).
Vậy phân thức biểu thị thời gian tàu tuần tra đi ngược dòng nhiều hơn thời gian tàu tuần tra đi xuôi dòng là: \(\frac{{12x + 216}}{{{x^2} - 4}}\) (giờ).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Điều kiện xác định của biểu thức A là x ≠ 1.
\(A = x + 1 - \frac{{{x^2} - 4}}{{x - 1}}\)
\( = \frac{{x\left( {x - 1} \right)}}{{x - 1}} + \frac{{x - 1}}{{x - 1}} - \frac{{{x^2} - 4}}{{x - 1}}\)
\( = \frac{{{x^2} - x + x - 1 - {x^2} + 4}}{{x - 1}}\)
\( = \frac{3}{{x - 1}}\)
Với x = ‒4 ta thấy x ‒ 1 = ‒4 ‒ 1 = ‒5 ≠ 0.
Do đó, giá trị của phân thức đã cho tại x = ‒4 là: \(A = \frac{3}{{ - 4 - 1}} = \frac{{ - 3}}{5}\).
b) Điều kiện xác định của phân thức A là 5 ‒ x ≠ 0
\(B = \frac{1}{{5 - x}} - \frac{{{x^2} + 5x}}{{{x^2} - 25}}\)
\( = \frac{1}{{5 - x}} - \frac{{x\left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\)
\( = \frac{1}{{5 - x}} - \frac{x}{{x - 5}} = \frac{1}{{5 - x}} + \frac{x}{{5 - x}}\)
\( = \frac{{1 + x}}{{5 - x}}\)
Với x = 99 ta thấy 5 ‒ x = 5 ‒ 99 = ‒94 ≠ 0.
Do đó, giá trị của phân thức đã cho tại x = 99 là:
\(B = \frac{{1 + 99}}{{5 - 99}} = \frac{{100}}{{ - 94}} = - \frac{{50}}{{47}}\).
c*) Ta có: x3 ‒ x2 + x ‒ 1 = (x3 ‒ x2) + (x ‒ 1)
= x2(x ‒ 1) + (x ‒ 1) = (x ‒ 1)(x2 + 1).
Điều kiện xác định của biểu thức C là x ≠ 1.
Suy ra \(C = \frac{1}{{x - 1}} - \frac{{2x}}{{{x^3} - {x^2} + x - 1}} = \frac{1}{{x - 1}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\)
\( = \frac{{{x^2} + 1}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} - \frac{{2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{{x^2} + 1 - 2x}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}}\)
\({\rm{\;}} = \frac{{{{(x - 1)}^2}}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \frac{{x - 1}}{{{x^2} + 1}}\)
Ta thấy x = 0,7 ≠ 1 thỏa mãn điều kiện xác định
Vậy giá trị của biểu thức C tại x = 0,7 là: \(C = \frac{{0,7 - 1}}{{{{0,7}^2} + 1}} = \frac{{ - 0,3}}{{1,49}} = \frac{{ - 30}}{{149}}\).
d*) Điều kiện xác định của biểu thức D là x ≠ 0; x ≠ ‒1; x ≠ ‒2.
Ta có: \(D = \frac{1}{{x\left( {x + 1} \right)}} + \frac{1}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \frac{1}{{x + 2}}\)
\( = \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + \left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right) + \frac{1}{{x + 2}}\)\( = \frac{1}{x}\)
Ta thấy \(x = \frac{1}{{23}}\) thỏa mãn điều kiện xác định nên giá trị của biểu thức \(D\) tại \(x = \frac{1}{{23}}\) là:
\(D = \frac{1}{{\frac{1}{{23}}}} = 23\).
Lời giải
Lời giải
a) Ta có: x2 ‒ 4 = x2 ‒ 22 = (x ‒ 2)(x + 2) nên điều kiện xác định của biểu thức \(T\) là:
x ‒ 2 ≠ 0; x + 2 ≠ 0 hay x ≠ 2; x ≠ ‒2.
b) Ta có: \(T = \frac{{{x^3}}}{{{x^2} - 4}} - \frac{x}{{x - 2}} - \frac{2}{{x + 2}}\)
\(\; = \frac{{{x^3}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\(\; = \frac{{{x^3} - {x^2} - 2x - 2x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^3} - {x^2} - 4x + 4}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)
\(\; = \frac{{\left( {{x^3} - 4x} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = \frac{{x\left( {{x^2} - 4} \right) - \left( {{x^2} - 4} \right)}}{{{x^2} - 4}}\)
\(\; = \frac{{\left( {x - 1} \right)\left( {{x^2} - 4} \right)}}{{{x^2} - 4}} = x - 1\)
Suy ra T = 0 khi x ‒ 1 = 0 hay x = 1 (thoả mãn điều kiện xác định).
Vậy x = 1 thì T = 0.
c) Để T > 0 thì x ‒ 1 > 0 hay x > 1.
Kết hợp với x là số nguyên và điều kiện xác định x ≠ 2; x ≠ ‒2, suy ra x ∈ {3; 4; 5;...}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.