Câu hỏi:
12/07/2024 2,427
Cho ba số \(\frac{1}{{b + c}},\,\frac{1}{{c + a}},\,\frac{1}{{a + b}}\) theo thứ tự lập thành cấp số cộng. Chứng minh rằng ba số a2, b2, c2 theo thứ tự cũng lập thành một cấp số cộng.
Câu hỏi trong đề: Giải SBT Toán 11 Cánh Diều Cấp số cộng có đáp án !!
Quảng cáo
Trả lời:
Do ba số \(\frac{1}{{b + c}},\,\frac{1}{{c + a}},\,\frac{1}{{a + b}}\) theo thứ tự lập thành một cấp số cộng nên
\(\frac{1}{{c + a}} - \frac{1}{{b + c}} = \frac{1}{{a + b}} - \frac{1}{{c + a}}\)
\( \Leftrightarrow \frac{2}{{c + a}} = \frac{1}{{a + b}} + \frac{1}{{b + c}}\)
\( \Leftrightarrow \frac{2}{{c + a}} = \frac{{b + c + a + b}}{{\left( {a + b} \right)\left( {b + c} \right)}}\)
\( \Leftrightarrow \frac{2}{{c + a}} = \frac{{2b + c + a}}{{\left( {a + b} \right)\left( {b + c} \right)}}\)
⇒ 2(a + b)(b + c) = (c + a)(2b + c + a)
⇔ 2ab + 2ac + 2b2 + 2bc = 2bc + c2 + ca + 2ab + ac + a2
⇔ 2b2 = a2 + c2
⇔ b2 – a2 = c2 – b2.
Suy ra ba số a2, b2, c2 theo thứ tự cũng lập thành một cấp số cộng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + \left( {4 - 1} \right)d = 10\\{u_1} + \left( {7 - 1} \right)d = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 6d = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).
Vậy cấp số cộng đã cho có số hạng đầu u1 = 1 và công sai d = 3.
Lời giải
Đáp án đúng là: B
Tổng 10 số hạng đầu của cấp số cộng đó là:
\({S_{10}} = \frac{{\left[ {2{u_1} + \left( {10 - 1} \right)d} \right].10}}{2} = \frac{{\left( {2.2 + 9.\left( { - 5} \right)} \right).10}}{2} = - 205\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.