Câu hỏi:
13/07/2024 1,441Cho (un) là cấp số cộng có u2 + u4 = 22, u1 . u5 = 21 và công sai d dương.
Tính tổng: u1 + u5 + u9 + ... + u101.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có u2 + u4 = (u1 + d) + (u1 + 3d) = 2u1 + 4d = 22, suy ra 4d = 22 – 2u1.
Lại có u1 . u5 = u1 . (u1 + 4d) = u1 . (u1 + 22 – 2u1) = u1 . (22 – u1).
Mà u1 . u5 = 21, do đó u1 . (22 – u1) = 21 ⇔ 22u1 – u12 – 21 = 0 \( \Leftrightarrow \left[ \begin{array}{l}{u_1} = 1\\{u_1} = 21\end{array} \right.\).
Với u1 = 1, suy ra \(d = \frac{{22 - 2{u_1}}}{4} = \frac{{22 - 2.1}}{4} = 5 > 0\) (thỏa mãn).
Với u1 = 21, suy ra \(d = \frac{{22 - 2{u_1}}}{4} = \frac{{22 - 2.21}}{4} = - 5 < 0\) (không thỏa mãn).
Vậy cấp số cộng (un) có số hạng đầu u1 = 1 và công sai d = 5.
Ta có u5 – u1 = (u1 + 4d) – u1 = 4d, tương tự u9 – u5 = 4d, ...
Do đó các số u1, u5, u9, ..., u100 lập thành một cấp số cộng có số hạng đầu u1 = 1 và công sai d' = 4d = 4 . 5 = 20.
Lại có (101 – 1) : 4 + 1 = 26 nên tổng u1 + u5 + u9 + ... + u101 gồm 26 số hạng.
Do vậy, u1 + u5 + u9 + ... + u101 \( = \frac{{\left[ {2{u_1} + \left( {26 - 1} \right)d'} \right].26}}{2} = \frac{{\left( {2.1 + 25.20} \right).26}}{2} = 6\,526\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm số hạng đầu và công sai của cấp số cộng (un), biết:
\(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19;\end{array} \right.\)
Câu 2:
Cho (un) là cấp số cộng có Sn = n2 + 4n với n ∈ ℕ*. Số hạng đầu u1 và công sai d của cấp số cộng đó là:
A. u1 = 3, d = 2.
B. u1 = 5, d = 2.
C. u1 = 8, d = – 2.
D. u1 = – 5, d = 2.
Câu 3:
Cho (un) là cấp số cộng có số hạng đầu u1 = 2, công sai d = − 5. Tổng 10 số hạng đầu của cấp số cộng đó là:
A. – 410.
B. – 205.
C. 245.
D. – 230.
Câu 4:
Cho cấp số cộng (un) biết \({u_1} = \frac{1}{3}\); u8 = 26. Công sai d của cấp số cộng đó là:
A. \(\frac{{11}}{3}\).
B. \(\frac{{10}}{3}\).
C. \(\frac{3}{{10}}\).
D. \(\frac{3}{{11}}\).
Câu 5:
Trong các dãy số (un) với số hạng tổng quát sau, dãy số nào là cấp số cộng?
A. un = 3n.
B. un = 1 – 3n.
C. un = 3n + 1.
D. un = 3 + n2.
Câu 6:
Cho cấp số cộng (un) biết u5 + u7 = 19. Giá trị của u2 + u10 là:
A. 38.
B. 29.
C. 12.
D. 19.
Câu 7:
Tìm số hạng đầu và công sai của cấp số cộng (un), biết:
\(\left\{ \begin{array}{l}{S_{10}} = 165\\{S_{20}} = 630.\end{array} \right.\)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
về câu hỏi!