Câu hỏi:

13/07/2024 1,088

Cho (un) là cấp số cộng có u1 + u5 + u9 + u13 + u17 + u21 = 234.

Tính u2 + u8 + u14 + u20.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: u1 + u5 + u9 + u13 + u17 + u21

= u1 + (u1 + 4d) + (u1 + 8d) + (u1 + 12d) + (u1 + 16d) + (u1 + 20d)

= 6u1 + 60d

Mà u1 + u5 + u9 + u13 + u17 + u21 = 234 nên 6u1 + 60d = 234 u1 + 10d = 39.

Lại có u2 + u8 + u14 + u20 = (u1 + d) + (u1 + 7d) + (u1 + 13d) + (u1 + 19d)

= 4u1 + 40d = 4(u1 + 10d) = 4 . 39 = 156.

Vậy u2 + u8 + u14 + u20 = 156.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\left\{ \begin{array}{l}{u_4} = 10\\{u_7} = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + \left( {4 - 1} \right)d = 10\\{u_1} + \left( {7 - 1} \right)d = 19\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 6d = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).

Vậy cấp số cộng đã cho có số hạng đầu u1 = 1 và công sai d = 3.

Lời giải

Đáp án đúng là: B

Tổng 10 số hạng đầu của cấp số cộng đó là:

\({S_{10}} = \frac{{\left[ {2{u_1} + \left( {10 - 1} \right)d} \right].10}}{2} = \frac{{\left( {2.2 + 9.\left( { - 5} \right)} \right).10}}{2} = - 205\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP