Câu hỏi:

12/07/2024 335 Lưu

Cho ba số \(\frac{2}{{b - a}},\,\,\frac{1}{b},\,\frac{2}{{b - c}}\) theo thứ tự lập thành một cấp số cộng. Chứng minh rằng ba số a, b, c theo thứ tự đó lập thành một cấp số nhân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do ba số \(\frac{2}{{b - a}},\,\,\frac{1}{b},\,\frac{2}{{b - c}}\) theo thứ tự lập thành một cấp số cộng nên

\(\frac{1}{b} - \frac{2}{{b - a}} = \frac{2}{{b - c}} - \frac{1}{b}\)

\( \Leftrightarrow \frac{{b - a - 2b}}{{b\left( {b - a} \right)}} = \frac{{2b - \left( {b - c} \right)}}{{b\left( {b - c} \right)}}\)

\( \Leftrightarrow \frac{{ - a - b}}{{b - a}} = \frac{{b + c}}{{b - c}}\) (do b ≠ 0)

\( \Rightarrow \left( { - a - b} \right)\left( {b - c} \right) = \left( {b - a} \right)\left( {b + c} \right)\)

– ab + ac – b2 + bc = b2 + bc – ab – ac

ac – b2 = b2 – ac

2b2 = 2ac

b2 = ac

\( \Leftrightarrow \frac{b}{a} = \frac{c}{b}\).

Suy ra ba số a, b, c theo thứ tự lập thành một cấp số nhân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Hình vuông C1 có diện tích S1 = 1.

Hình vuông C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1, do đó hình vuông C2 có diện tích S2 = \(\frac{1}{2}{S_1} = \frac{1}{2}\).

Tương tự, hình vuông C3 có diện tích \({S_3} = \frac{1}{2}{S_2} = \frac{1}{2}.\frac{1}{2} = \frac{1}{{{2^2}}}\).

Cứ tiếp tục như thế ta tính được diện tích hình vuông C2023\({S_{2023}} = \frac{1}{{{2^{2022}}}}\).

Lời giải

u1+u2+u3=13u4+u5+u6=351u1+u1q+u1q2=13u1q3+u1q4+u1q5=351

Ta có u11+q+q2=13                 1u1q31+q+q2=351         2

Lấy (2) chia vế theo vế cho (1), ta được q3 = 27, suy ra q = 3.

Ta có u1(1 + 3 + 32) = 13 13u1 = 13 u1 = 1.

Vậy u1 = 1, q = 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP