Câu hỏi:
13/07/2024 930Cho (un) là cấp số nhân có u1 + u5 = 51 và u2 + u6 = 102.
Tính u10.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Xét số hạng đầu u1 và công bội q. Ta có:
\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{u_1}q\left( {1 + {q^4}} \right) = 102\,\,\,\,\left( 2 \right)\end{array} \right.\)
Lấy (2) chia vế theo vế (1) ta được q = 2.
Suy ra u1 . (1 + 24) = 51 ⇔ 17u1 = 51 ⇔ u1 = 3.
Do đó, u10 = u1 . q9 = 3 . 29 = 1 536.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm số hạng đầu và công bội của cấp số nhân (un), biết:
\(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 13\\{u_4} + {u_5} + {u_6} = 351.\end{array} \right.\)
Câu 2:
Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là:
A. \(\frac{1}{{{2^{2022}}}}\).
B. \(\frac{1}{{{2^{2023}}}}\).
C. \(\frac{1}{{{2^{1011}}}}\).
D. \(\frac{1}{{{2^{1012}}}}\).
Câu 3:
Cho dãy số (un) biết u1 = 1, \({u_n} = \frac{1}{3}{u_{n - \,1}} + 1\) với n ∈ ℕ*, n ≥ 2. Đặt \({v_n} = {u_n} - \frac{3}{2}\) với n ∈ ℕ*.
Tìm công thức số hạng tổng quát của (vn), (un).
Câu 4:
Tìm số hạng đầu và công bội của cấp số nhân (un), biết:
\(\left\{ \begin{array}{l}{u_3} = 16\\{u_2} + {u_4} = 40;\end{array} \right.\)
Câu 5:
Anh Dũng kí hợp đồng lao động trong 10 năm với phương án trả lương như sau: Năm thứ nhất, tiền lương của anh Dũng là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương của anh Dũng được tăng lên 10%. Tính tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).
Câu 6:
Trong các dãy số sau, dãy số nào là cấp số nhân?
A. 128; – 64; 32; – 16; 8.
B. \(\sqrt 2 ;\,\,2;\,\,2\sqrt 2 ;\,\,4;\,\,8\).
C. 5; 6; 7; 8; 9.
D. 15; 5; 1; \(\frac{1}{5};\,\,\frac{1}{{25}}\).
Câu 7:
Tìm số hạng đầu và công bội của cấp số nhân (un), biết:
\(\left\{ \begin{array}{l}{u_1} + {u_6} = 244\\{u_2}.{u_5} = 243;\end{array} \right.\)
về câu hỏi!