Câu hỏi:
13/07/2024 1,395Ba số phân biệt tạo thành một cấp số nhân có tổng bằng 78; đồng thời chúng là số hạng thứ nhất, thứ ba và thứ chín của một cấp số cộng. Tìm ba số đó.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Giả sử công bội của cấp số nhân là q, công sai của cấp số cộng là d, khi đó gọi ba số cần tìm là a, aq, aq2. (với a, p ≠ 0)
Theo bài ra ta có: a + aq + aq2 = 78 (*); aq = a + 2d; aq2 = a + 8d.
Từ aq = a + 2d, suy ra aq – a = 2d ⇔ a(q – 1) = 2d. (1)
Từ aq2 = a + 8d, suy ra aq2 – a = 8d ⇔ a(q2 – 1) = 8d ⇔ a(q – 1)(q + 1) = 8d. (2)
Với q = 1 thì a = aq = aq2, mà ba số cần tìm là phân biệt nên q = 1 không thỏa mãn.
Do vậy, q ≠ 1 ⇒ q – 1 ≠ 0, do đó a(q – 1) ≠ 0. Chia vế theo vế của (2) cho (1):
Ta được: q + 1 = 4 ⇔ q = 3.
Thay q = 3 vào (*): a + 3a + 9a = 78 ⇔ 13a = 78 ⇔ a = 6.
Suy ra ba số cần tìm là 6; 6 . 3 = 18; 18 . 3 = 54.
Vậy ba số cần tìm là: 6; 18; 54.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là:
A. \(\frac{1}{{{2^{2022}}}}\).
B. \(\frac{1}{{{2^{2023}}}}\).
C. \(\frac{1}{{{2^{1011}}}}\).
D. \(\frac{1}{{{2^{1012}}}}\).
Câu 2:
Tìm số hạng đầu và công bội của cấp số nhân (un), biết:
\(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} = 13\\{u_4} + {u_5} + {u_6} = 351.\end{array} \right.\)
Câu 3:
Tìm số hạng đầu và công bội của cấp số nhân (un), biết:
\(\left\{ \begin{array}{l}{u_3} = 16\\{u_2} + {u_4} = 40;\end{array} \right.\)
Câu 4:
Anh Dũng kí hợp đồng lao động trong 10 năm với phương án trả lương như sau: Năm thứ nhất, tiền lương của anh Dũng là 120 triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương của anh Dũng được tăng lên 10%. Tính tổng số tiền lương anh Dũng lĩnh được trong 10 năm đầu đi làm (làm tròn kết quả đến hàng đơn vị theo đơn vị triệu đồng).
Câu 5:
Cho (un) là cấp số nhân có \({u_1} = \frac{1}{3}\); u8 = 729.
Tổng 8 số hạng đầu của cấp số nhân đó là:
A. \(\frac{{1 - {3^8}}}{2}\).
B. \(\frac{{{3^8} - 1}}{6}\).
C. \(\frac{{{3^8} - 1}}{2}\).
D. \(\frac{{1 - {3^8}}}{6}\).
Câu 6:
Trong các dãy số sau, dãy số nào là cấp số nhân?
A. 128; – 64; 32; – 16; 8.
B. \(\sqrt 2 ;\,\,2;\,\,2\sqrt 2 ;\,\,4;\,\,8\).
C. 5; 6; 7; 8; 9.
D. 15; 5; 1; \(\frac{1}{5};\,\,\frac{1}{{25}}\).
Câu 7:
Trong các dãy số (un) với số hạng tổng quát sau, dãy số nào là cấp số nhân?
A. un = 5n.
B. un = 1 + 5n.
C. un = 5n + 1.
D. un = 5 + n2.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận