Câu hỏi:
13/07/2024 1,536
Trong các hình sau, hình nào có tâm đối xứng?
Tồn tại hay không phép biến hình biến mỗi hình phẳng sau đây thành chính nó?
Trong các hình sau, hình nào có tâm đối xứng?
Tồn tại hay không phép biến hình biến mỗi hình phẳng sau đây thành chính nó?

Quảng cáo
Trả lời:
⦁ Cả 4 hình đều có tâm đối xứng là điểm O như hình vẽ dưới đây:

⦁ Ta xét hình bông tuyết:

Lấy điểm B trùng O. Khi đó qua O, điểm đối xứng với B là chính nó.
Lấy điểm A bất kì trên hình bông tuyết sao cho A ≠ O.
Khi đó ta luôn xác định được một điểm A’ sao cho O là trung điểm của đoạn AA’.
Tương tự như vậy, mỗi điểm M bất kì khác O trên hình bông tuyết, ta đều xác định được một điểm M’ trên hình sao cho O là trung điểm của đoạn MM’.
Vì vậy phép biến hình biến hình bông tuyết thành chính nó là phép biến hình biến hình biến điểm O thành chính nó và biến mỗi điểm M khác O thành điểm M’ sao cho O là trung điểm của đoạn MM’.
Chứng minh tương tự với hình 8 chiếc lá, hình bình hành và hình bông hoa, ta cũng được kết quả như trên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường tròn (C): x2 + y2 – 4x – 5 = 0 có tâm I(2; 0), bán kính .
Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.
Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính R’ = R = 3.
Gọi I’ = ĐO(I), suy ra O là trung điểm II’ với I(2; 0).
Do đó
Vì vậy tọa độ I’(–2; 0).
Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:
(x + 2)2 + y2 = 9.
Lời giải
a) Gọi M’ là ảnh của M qua ĐO.
Suy ra O là trung điểm của MM’ với M(3; –4).
Do đó
Vậy M’(–3; 4).
b) • Chọn A(0; 2) ∈ d: x – 3y + 6 = 0.
Gọi A’ là ảnh của A qua ĐO.
Suy ra O là trung điểm của AA’ với A(0; 2)
Do đó
Vì vậy A’(0; –2).
• Đường thẳng d: x – 3y + 6 = 0 có vectơ pháp tuyến .
Gọi d’ là ảnh của d qua ĐO.
Suy ra d’ song song hoặc trùng với d, nên d’ nhận vectơ pháp tuyến của d là làm vectơ pháp tuyến.
Vậy đường thẳng d’ đi qua A’(0; –2) và nhận làm vectơ pháp tuyến nên có phương trình là:
1(x – 0) – 3(y + 2) = 0 hay x – 3y – 6 = 0.
c) Đường tròn (C): (x + 2)2 + (y – 1)2 = 4 có tâm I(–2; 1), bán kính R = 2.
Gọi (C’) là ảnh của (C) qua ĐO nên (C’) có tâm là ảnh của I(–2; 1) và có bán kính R’ = R = 2.
Gọi I’ = ĐO(I).
Suy ra O là trung điểm II’.
Do đó
Vì vậy tọa độ I’(2; –1).
Vậy đường tròn (C’) là ảnh của (C) qua ĐO, có tâm I’(2; –1) và R’ = 2 nên có phương trình là:
(x – 2)2 + (y + 1)2 = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.