Câu hỏi:
13/07/2024 994a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).
b) Nêu tên một hình có vô số tâm đối xứng.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
a) ⦁ Hình 9a:
Ta đặt hình bình hành ở Hình 9a có các đỉnh là A, B, C, D (hình vẽ).
Hình bình hành ABCD có tâm O là giao điểm hai đường chéo.
Suy ra O là trung điểm của AC, do đó C = ĐO(A) và A = ĐO(C).
Chứng minh tương tự, ta được B = ĐO(D) và D = ĐO(B).
Do đó ảnh của hình bình hành ABCD qua ĐO là chính nó.
Vậy O là tâm đối xứng của Hình 9a.
⦁ Hình 9b:
Giả sử I là một điểm trên Hình 9b (hình vẽ).
Lấy điểm A bất kì trên Hình 9b sao cho A ≠ I.
Khi đó ta luôn xác định được một điểm A’ trên Hình 9b sao cho A’ = ĐI(A).
Lấy điểm B trùng I. Khi đó B = ĐI(B).
Tương tự như vậy, ta chọn các điểm bất kì nằm trên Hình 9b, ta đều xác định được ảnh của các điểm đó qua ĐI trên Hình 9b.
Vậy I là tâm đối xứng của Hình 9b.
⦁ Hình 9c:
Chứng minh tương tự Hình 9b, ta được G là tâm đối xứng của Hình 9c.
⦁ Hình 9d không có tâm đối xứng.
b) Hình có vô số tâm đối xứng là:
– Đường thẳng: do đường thẳng không có điểm đầu và điểm cuối nên mỗi điểm bất kì nằm trên đường thẳng đều là tâm đối xứng của đường thẳng đó;
– Hình gồm hai đường thẳng song song: tâm đối xứng của hình gồm hai đường thẳng song song luôn di động trên một đường thẳng cố định, đường thẳng đó là trục đối xứng của hai đường thẳng đã cho.
Cụ thể, giả sử O là tâm đối xứng của hai đường thẳng song song a và b. Khi đó O di động trên đường thẳng c là trục đối xứng của hai đường thẳng a và b.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
(C): x2 + y2 – 4x – 5 = 0. Viết phương trình ảnh của (C) qua phép đối xứng tâm O.
Câu 2:
Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của
a) điểm M(3; –4);
b) đường thẳng d: x – 3y + 6 = 0;
c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm M’ = ĐI(M), N’ = ĐI(N), P’ = ĐI(P).
Câu 4:
Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:
– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).
– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).
– Dùng kéo cắt theo đường đã vẽ (Hình 14c).
– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).
Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.
Câu 5:
Trong các hình sau, hình nào có tâm đối xứng?
Tồn tại hay không phép biến hình biến mỗi hình phẳng sau đây thành chính nó?
Câu 6:
Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
về câu hỏi!