Câu hỏi:
12/07/2024 592Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’ và nằm ngoài đoạn A’B. Gọi G và G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’. Chứng minh rằng ∆OGG’ là tam giác vuông cân.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Do DOAB là tam giác vuông cân nên OA = OB và .
Do DOA’B’ là tam giác vuông cân nên OA’ = OB’ và .
Phép quay tâm O, góc quay 90° biến:
⦁ Điểm O thành điểm O;
⦁ Điểm A thành điểm B;
⦁ Điểm A’ thành điểm B’.
Do đó ảnh của ∆OAA’ qua phép quay tâm O, góc quay 90° là ∆OBB’.
Mà G, G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’.
Vì vậy ảnh của G qua phép quay tâm O, góc quay 90° là G’.
Suy ra OG = OG’ và .
DOGG’ có OG = OG’ và nên là tam giác vuông cân tại O.
Vậy ∆OGG’ vuông cân tại O.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Kính lục phân là một dụng cụ quang học sử dụng gương quay để thực hiện phép quay Q(O, φ) biến tia Ox (song song với đường chân trời) thành tia Oy (song song với trục Trái Đất), nhờ đó đo được góc φ giữa trục của Trái Đất và đường chân trời tại vị trí của người đo. Hãy giải thích tại sao góc φ của phép quay này lại cho ta vĩ độ tại điểm sử dụng kính.
Câu 2:
Trong mặt phẳng tọa độ Oxy, tìm tọa độ của các điểm là ảnh của điểm lần lượt qua các phép quay Q(O, 45°), Q(O, 90°), Q(O, 180°), Q(O, 360°).
Câu 3:
Cho hai tam giác đều ABC và AB’C’ như Hình 9. Gọi M, N lần lượt là trung điểm của BB’ và CC’. Chứng minh ∆AMN đều.
Câu 4:
Cho hình vuông ABCD có cạnh bằng a và có tâm I, tìm ảnh qua phép quay Q(I, 90°) của các hình sau:
a) Tam giác IAB;
b) Đường thẳng BC;
c) Đường tròn (B, a).
Câu 5:
Chỉ ra phép quay có thể biến mỗi hình trong Hình 10 thành chính nó.
Câu 6:
Một con tàu đang di chuyển theo hướng bắc. Người lái tàu phải thực hiện phép quay nào trên bánh lái để con tàu:
a) rẽ sang hướng tây?
b) rẽ sang hướng đông?
về câu hỏi!