Câu hỏi:

11/07/2024 220

Chứng minh rằng nếu phép đồng dạng F biến tam giác ABC thành tam giác A'B'C' thì F biến trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác ABC thành trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác A'B'C'.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Gọi D là trung điểm của đoạn thẳng BC thì phép đồng dạng F biến điểm D thành trung điểm D' của đoạn thẳng B'C' và vì thế trung tuyến AD của tam giác ABC biến thành trung tuyến A'D' của tam giác A'B'C'. Đối với hai trung tuyến còn lại cũng vậy. Vì trọng tâm tam giác là giao điểm của các đường trung tuyến nên trọng tâm tam giác ABC biến thành trọng tâm tam giác A'B'C'.

+) Gọi AH là đường cao của tam giác ABC (H BC). Khi đó phép đồng dạng F biến đường thẳng AH thành đường thẳng A'H'. Vì AH BC nên A'H' B'C', nói cách khác A'H' là đường cao của tam giác A'B'C'. Đối với các đường cao khác cũng thế. Vì trực tâm tam giác là giao điểm của các đường cao nên trực tâm tam giác ABC biến thành trực tâm tam giác A'B'C'.

+) Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC thì OA = OB = OC nên nếu điểm O biến thành điểm O' thì O'A' = O'B' = O'C' = kOA = kOB = kOC, do đó O' là tâm đường tròn ngoại tiếp tam giác A'B'C'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Khẳng định nào dưới đây là đúng?

a) Hai tam giác luôn đồng dạng với nhau;

b) Hai hình chữ nhật luôn đồng dạng với nhau;

c) Hai hình thoi luôn đồng dạng với nhau;

d) Hai hình vuông luôn đồng dạng với nhau.

Xem đáp án » 11/07/2024 1,529

Câu 2:

Phép biến hình nào trong các phép biến hình dưới đây là phép vị tự?

a) Phép tịnh tiến theo vectơ khác 0;

b) Phép đối xứng tâm;

c) Phép đối xứng trục;

d) Phép quay.

Xem đáp án » 13/07/2024 1,225

Câu 3:

Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Xem đáp án » 12/07/2024 1,154

Câu 4:

Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.

Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.    (ảnh 1)

Xem đáp án » 12/07/2024 1,053

Câu 5:

Phép biến hình nào trong các phép biến hình dưới đây không là phép đồng dạng?

a) Phép đối xứng trục;

b) Phép đồng nhất;

c) Phép vị tự tỉ số k = 1;

d) Phép biến hình biến mỗi điểm trong mặt phẳng thành điểm A cho trước.

Xem đáp án » 13/07/2024 876

Câu 6:

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.

Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.  Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.    (ảnh 1)

Xem đáp án » 12/07/2024 874

Câu 7:

Cho tam giác ABC có O là trung điểm của cạnh BC. Xác định ảnh của tam giác ABC trong phép vị tự tâm O tỉ số k=12.

Xem đáp án » 13/07/2024 821

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn