Câu hỏi:
13/07/2024 2,182
Cho tứ diện ABCD. Trên cạnh BC lấy điểm M sao cho MB = 2MC. Mặt phẳng (P) đi qua M và song song với mặt phẳng (ABD) cắt cạnh AC tại N. Tỉ số bằng:
A. .
B. 1.
C. 2.
D. 3.
Cho tứ diện ABCD. Trên cạnh BC lấy điểm M sao cho MB = 2MC. Mặt phẳng (P) đi qua M và song song với mặt phẳng (ABD) cắt cạnh AC tại N. Tỉ số bằng:
A. .
B. 1.
C. 2.
D. 3.
Quảng cáo
Trả lời:
Đáp án đúng là: C

Trong mặt phẳng (BCD), từ M kẻ đường thẳng song song với BD cắt CD tại E.
Trong mặt phẳng (ABC), từ M kẻ đường thẳng song song với AB cắt AC tại N.
Từ đó suy ra (MNE) // (ABD) hay mặt phẳng (MNE) chính là mặt phẳng (P).
Ta có MB = 2MC .
Xét tam giác ABC có MN // AB, theo định lí Thalés ta có: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì M, N lần lượt là trung điểm của các cạnh SB, BC nên MN là đường trung bình của tam giác SBC, do đó MN // SC. Mà MN ⊂ (MNP).
Từ đó suy ra SC // (MNP).
b) Gọi Q là trung điểm của SD, mà P là trung điểm của CD nên PQ là đường trung bình của tam giác SCD nên SC // QP.
Hai mặt phẳng (MNP) và (SCD) có điểm P chung và MN // SC nên giao tuyến của hai mặt phẳng (MNP) và (SCD) là đường thẳng QP. Đồng thời, Q là giao điểm của đường thẳng SD với mặt phẳng (MNP).
c) Trong mặt phẳng (ABCD), gọi I là giao điểm của AC và NP.
Trong mặt phẳng (SAC), lấy E thuộc SA sao cho IE // SC.
Khi đó, ta có I ∈ (MNP) và IE // MN nên E ∈ (MNP).
Vậy E là giao điểm của SA với mặt phẳng (MNP).
d) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC và BD.
Ta có NP là đường trung bình của tam giác BCD nên NP // BD hay NI // BO.
Trong tam giác BOC có NI // BO và N là trung điểm của BC nên NI là đường trung bình của tam giác BOC, suy ra I là trung điểm của OC. Khi đó . Suy ra .
Xét tam giác SAC, ta có IE // SC nên .
Lời giải
Đáp án đúng là: B

Vì ABCD là hình bình hành nên AB // CD.
Ta có M ∈ SA nên M ⊂ (SAB).
Hai mặt phẳng (SAB) và (MCD) có M là điểm chung và lần lượt chứa hai đường thẳng AB và CD song song với nhau nên giao tuyến của chúng là đường thẳng đi qua M và song song với AB.
Từ M, kẻ đường thẳng song song với AB, cắt SB tại N. Khi đó (SAB) ∩ (MCD) = MN.
Do vậy N là giao điểm của SB và mặt phẳng (MCD).
Ta có MA = 2MS .
Xét tam giác SAB có MN // AB, theo định lí Thalés ta có: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.