Câu hỏi:
13/07/2024 1,146Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:
\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có: \[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}2x - y \le 3\\ - 2x + y \le \frac{8}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - y \le 3\\ - 10x + 5y \le 8\end{array} \right.\].
Ta vẽ các đường thẳng:
(d1): 2x − y = 3 hay y = 2x − 3
(d2): −10x + 5y = 8 hay 5y = 10x + 8
Lấy điểm O(0; 0), ta thấy O không thuộc cả hai đường thẳng trên và 2 . 0 − 0 £ 3 và (−10) . 0 + 5 . 0 £ 8 nên phần được giới hạn bởi hai đường thẳng trên chứa điểm O (phần không tô đậm) là nghiệm của hệ bất phương trình.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).
a) Rút gọn N.
b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.
Câu 4:
Câu 5:
Câu 7:
về câu hỏi!