Câu hỏi:

13/07/2024 1,373 Lưu

Cho hệ bất phương trình sau, biểu diễn hình học tập nghiệm:

\[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Ta có: \[\left\{ \begin{array}{l}2x - y \le 3\\2x + 5y \le 12x + 8\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}2x - y \le 3\\ - 2x + y \le \frac{8}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - y \le 3\\ - 10x + 5y \le 8\end{array} \right.\].

Ta vẽ các đường thẳng:

(d1): 2x − y = 3 hay y = 2x − 3

(d2): −10x + 5y = 8 hay 5y = 10x + 8

Lấy điểm O(0; 0), ta thấy O không thuộc cả hai đường thẳng trên và 2 . 0 − 0 £ 3 và (−10) . 0 + 5 . 0 £ 8 nên phần được giới hạn bởi hai đường thẳng trên chứa điểm O (phần không tô đậm) là nghiệm của hệ bất phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Đáp án đúng là: B

Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0

Khi đó:

sin a và cot a trái dấu

Vậy khẳng định A là sai

Tích sin a.cot a mang dấu âm

Vậy khẳng định B là đúng

Tích sin a.cos a mang dấu âm

Vậy khẳng định C là sai

sin a và tan a trái dấu

Vậy khẳng định D là sai

Chọn đáp án B.

Lời giải

Lời giải

Media VietJack

Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a

Mặt khác SA ^ (ABC) Þ SA ^ BC (2)

Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a

Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP