Câu hỏi:

25/07/2023 375 Lưu

Cho hàm số y = ecos x. Mệnh đề nào sau đây đúng?

A. y¢.cos x + y.sin x + y² = 0;
B. y¢.sin x + y.cos x + y² = 0;
C. y¢.sin x − y².cos x + y¢ = 0;
D. y¢.cos x − y.sin x − y² = 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Ta có: \(\left\{ \begin{array}{l}y' = - \sin x\,.\,{e^{\cos x}}\\y'' = {\sin ^2}x\,.\,{e^{\cos x}} - \cos x\,.\,{e^{\cos x}}\end{array} \right.\)

Thay lần lượt vào các đáp án thì ta được đáp án B đúng.

Thật vậy:

Ta có: y¢ . sin x + y . cos x + y²

= −sin x . ecos x.sin x + ecos x . cos x + sin2 x . ecos x − cos x . ecos x  

= −sin2 x . ecos x + ecos x . cos x + sin2 x . ecos x − cos x . ecos x = 0

Chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. sin a và cot a cùng dấu;
B. Tích sin a.cot a mang dấu âm;
C. Tích sin a.cos a mang dấu dương;
D. sin a và tan a cùng dấu.

Lời giải

Lời giải

Đáp án đúng là: B

Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0

Khi đó:

sin a và cot a trái dấu

Vậy khẳng định A là sai

Tích sin a.cot a mang dấu âm

Vậy khẳng định B là đúng

Tích sin a.cos a mang dấu âm

Vậy khẳng định C là sai

sin a và tan a trái dấu

Vậy khẳng định D là sai

Chọn đáp án B.

Lời giải

Lời giải

Media VietJack

Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a

Mặt khác SA ^ (ABC) Þ SA ^ BC (2)

Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a

Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. M = 2cos 2x(cos x + 1);
B. \(M = 4\cos 2x\left( {\frac{1}{2} + \cos x} \right)\);
C. \(M = 2\cos 2x\cos \left( {\frac{x}{2} + \frac{\pi }{6}} \right)\cos \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\);
D. \(M = 4\cos 2x\cos \left( {\frac{x}{2} + \frac{\pi }{6}} \right)\cos \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP