Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0; 2] không vượt quá 30. Tính tổng các phần tử của S.
Quảng cáo
Trả lời:

Lời giải
Đặt \(f\left( x \right) = \frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30\) là hàm số xác định và liên tục trên đoạn [0; 2]
Ta có: f ¢(x) = x3 − 28x + 48
Với mọi x Î [0; 2] ta có f ¢(x) = x3 − 28x + 48 = 0 Û x = 2
Mặt khác: f (0) = m − 30; f (x) = m + 14.
\(\mathop {\max }\limits_{\left[ {0;\;2} \right]} \left| {f\left( x \right)} \right| = \max \left\{ {\left| {f\left( 0 \right)} \right|;\;\left| {f\left( 2 \right)} \right|} \right\}\)
Theo bài ra ta có: \[\mathop {\max }\limits_{\left[ {0;\;2} \right]} \left| {f\left( x \right)} \right| \le 30 \Leftrightarrow \left\{ \begin{array}{l}\left| {f\left( 0 \right)} \right| \le 30\\\left| {f\left( 2 \right)} \right| \le 30\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left| {m - 30} \right| \le 30\\\left| {m + 14} \right| \le 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 30 \le m - 30 \le 30\\ - 30 \le m + 14 \le 30\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}0 \le m \le 60\\ - 44 \le m \le 16\end{array} \right. \Leftrightarrow 0 \le m \le 16\]
Do m Î ℤ Þ m Î S = {0; 1; 2; 3; 4; 5; …; 16}
Vậy tổng tất cả 17 giá trị trong tập S là \(\frac{{17\,.\,\left( {0 + 16} \right)}}{2} = 136\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: B
Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0
Khi đó:
• sin a và cot a trái dấu
Vậy khẳng định A là sai
• Tích sin a.cot a mang dấu âm
Vậy khẳng định B là đúng
• Tích sin a.cos a mang dấu âm
Vậy khẳng định C là sai
• sin a và tan a trái dấu
Vậy khẳng định D là sai
Chọn đáp án B.
Lời giải
Lời giải
Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a
Mặt khác SA ^ (ABC) Þ SA ^ BC (2)
Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a
Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.