Câu hỏi:

11/07/2024 261

Cho a; b; c đôi một khác nhau. Tính giá trị biểu thức:

\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}} - \frac{{{b^2}\left( {a - c} \right)}}{{\left( {b - c} \right)\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{c^2}\left( {a - b} \right)}}{{\left( {b - c} \right)\left( {a - c} \right)\left( {a - b} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - {b^2}\left( {a - c} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}b - {a^2}c - a{b^2} + {b^2}c + a{c^2} - b{c^2}}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {{b^2} - {c^2}} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {b - c} \right)\left( {b + c} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\[ = \frac{{\left( {b - c} \right)\left[ {{a^2} - a\left( {b + c} \right) + bc} \right]}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\]

\[ = \frac{{{a^2} - ab - ac + bc}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]

\[ = \frac{{a\left( {a - b} \right) - c\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]

\[ = \frac{{\left( {a - b} \right)\left( {a - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} = 1\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc a Î (90°; 180°). Khẳng định nào sau đây đúng?

Xem đáp án » 25/07/2023 37,890

Câu 2:

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ B đến mặt phẳng (SAC).

Xem đáp án » 13/07/2024 24,498

Câu 3:

Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).

a) Rút gọn N.

b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.

Xem đáp án » 13/07/2024 23,513

Câu 4:

Gọi M = cos x + cos 2x + cos 3x thì:

Xem đáp án » 25/07/2023 15,016

Câu 5:

Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \[AC = a;\;BC = \sqrt 2 a\], SA vuông góc với mặt phẳng đáy và SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng

Xem đáp án » 13/07/2024 13,911

Câu 6:

Tìm tập hợp các giá trị thực của tham số m để hàm số \(y = x + 1 + \frac{m}{{x - 2}}\) đồng biến trên mỗi khoảng xác định.

Xem đáp án » 13/07/2024 10,835

Câu 7:

Chứng minh tổng 3 góc tam giác bằng 180 độ.

Xem đáp án » 13/07/2024 9,401
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay