Câu hỏi:

13/07/2024 5,363 Lưu

Cho hàm số \[y = \frac{{mx - 5m - 4}}{{x + m}}\] (m là tham số thực). Có bao nhiêu nghiệm nguyên của m để hàm số đã cho nghịch biến trên từng khoảng xác định?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

TXĐ: D = ℝ \{−m}

Ta có: \(y' = \frac{{{m^2} + 5m + 4}}{{{{\left( {x + m} \right)}^2}}},\;\forall x \ne - m\)

Hàm số nghịch biến trên từng khoảng (−∞; −m) và (−m; +∞) nếu y¢ < 0, "x ¹ −m

\( \Leftrightarrow \frac{{{m^2} + 5m + 4}}{{{{\left( {x + m} \right)}^2}}} < 0,\;\forall x \ne - m\)

Û m2 + 5m + 4 < 0

Û −4 < m < −1

Mà m nguyên nên m Î {−3; −2}

Vậy có hai tham số m cần tìm là m Î {−3; −2}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Đáp án đúng là: B

Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0

Khi đó:

sin a và cot a trái dấu

Vậy khẳng định A là sai

Tích sin a.cot a mang dấu âm

Vậy khẳng định B là đúng

Tích sin a.cos a mang dấu âm

Vậy khẳng định C là sai

sin a và tan a trái dấu

Vậy khẳng định D là sai

Chọn đáp án B.

Lời giải

Lời giải

Media VietJack

Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a

Mặt khác SA ^ (ABC) Þ SA ^ BC (2)

Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a

Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP