Câu hỏi:
13/07/2024 2,239Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
\( = {\log _{2018}}2019 + {2^2}\,.\,2{\log _{2018}}2019 + {3^2}\,.\,3{\log _{2018}}2019 + ... + {n^2}\,.\,n{\log _{2018}}2019\)
= log 2018 2019 + 23 . log 2018 2019 + 33 . log 2018 2019 + … + n3 . log 2018 2019
= (13 + 23 + 33 + … + n3) log 2018 2019
Nên để \({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019 thì:
13 + 23 + 33 + … + n3 = 10102 . 20212
\( \Rightarrow {\left( {\frac{{{n^2} + n}}{2}} \right)^2} = {1010^2}\,.\,{2021^2}\)
\( \Rightarrow \frac{{n\left( {n + 1} \right)}}{2} = 1010\,.\,2021\)
Û n(n + 1) = 2 . 1010 . 2021 = 2020 . 2021
Þ n = 2020
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).
a) Rút gọn N.
b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.
Câu 4:
Câu 5:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!