Câu hỏi:

11/07/2024 1,224

Cho n là số nguyên dương, tìm n sao cho:

\[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019 = {1008^2}\,.\,{2017^2}{\log _a}2019\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

\[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019\]

\( = {\log _a}2019 + {2^2}\,.\,2{\log _a}2019 + {3^2}\,.\,3{\log _a}2019 + ... + {n^2}\,.\,n{\log _a}2019\)

= log a 2019 + 23 . log a 2019 + 33 . log a 2019 + … + n3 . log a 2019

= (13 + 23 + 33 + … + n3) log a 2019

Suy ra \[{\log _a}2019 + {2^2}{\log _{\sqrt a }}2019 + {3^2}{\log _{\sqrt[3]{a}}}2019 + ... + {n^2}{\log _{\sqrt[n]{a}}}2019\]

\[ = {1008^2}\,.\,{2017^2}{\log _a}2019\]

Khi: 13 + 23 + 33 + … + n3 = 10082 . 20172

\( \Rightarrow {\left( {\frac{{{n^2} + n}}{2}} \right)^2} = {1008^2}\,.\,{2017^2}\)

\( \Rightarrow \frac{{n\left( {n + 1} \right)}}{2} = 1008\,.\,2017\)

Û n(n + 1) = 2 . 1008 . 2017 = 2016 . 2017

Þ n = 2016

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc a Î (90°; 180°). Khẳng định nào sau đây đúng?

Xem đáp án » 25/07/2023 37,741

Câu 2:

Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).

a) Rút gọn N.

b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.

Xem đáp án » 13/07/2024 22,327

Câu 3:

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông góc với mặt phẳng đáy. Tính khoảng cách từ B đến mặt phẳng (SAC).

Xem đáp án » 13/07/2024 18,619

Câu 4:

Gọi M = cos x + cos 2x + cos 3x thì:

Xem đáp án » 25/07/2023 14,859

Câu 5:

Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \[AC = a;\;BC = \sqrt 2 a\], SA vuông góc với mặt phẳng đáy và SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng

Xem đáp án » 13/07/2024 12,110

Câu 6:

Tìm tập hợp các giá trị thực của tham số m để hàm số \(y = x + 1 + \frac{m}{{x - 2}}\) đồng biến trên mỗi khoảng xác định.

Xem đáp án » 13/07/2024 10,290

Câu 7:

Chứng minh tổng 3 góc tam giác bằng 180 độ.

Xem đáp án » 13/07/2024 9,134
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua