Câu hỏi:
11/07/2024 271Cho a, b, c thỏa mãn điều kiện a.b.c = 2005. Chứng minh rằng biểu thức sau không phụ thuộc a, b, c:
\(A = \frac{{2005a}}{{ab + 2005a + 2005}} + \frac{{2005b}}{{bc + 2005b + 2005}} + \frac{c}{{ac + c + 1}}\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
\(A = \frac{{2005a}}{{ab + 2005a + 2005}} + \frac{{2005b}}{{bc + 2005b + 2005}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{ac}}{{ac + c + 1}} + \frac{1}{{ac + c + 1}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{ac + c + 1}}{{ac + c + 1}} = 1\).
Vậy biểu thức A không phụ thuộc a, b, c.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho biểu thức: \(N = \frac{{2x - 10}}{{{x^2} - 7x + 10}} - \frac{{2x}}{{{x^2} - 4}} + \frac{1}{{2 - x}}\).
a) Rút gọn N.
b) Tìm giá trị nguyên của x để N nhận giá trị nguyên.
Câu 4:
Câu 5:
Câu 7:
về câu hỏi!