Câu hỏi:

19/08/2025 171 Lưu

Giải phương trình: \[\frac{{\cos x - \sqrt 3 \sin x}}{{2\sin x - 1}} = 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

ĐK: \(\left\{ \begin{array}{l}x \ne \frac{\pi }{6} + k2\pi \\x \ne \frac{{5\pi }}{6} + k2\pi \end{array} \right.\;\;\;\left( {k \in \mathbb{Z}} \right)\)

\[\frac{{\cos x - \sqrt 3 \sin x}}{{2\sin x - 1}} = 0\]

\[ \Leftrightarrow \cos x - \sqrt 3 \sin x = 0\]

\[ \Leftrightarrow \cos \left( {x + \frac{\pi }{3}} \right) = 0\]

\[ \Leftrightarrow x + \frac{\pi }{3} = \frac{\pi }{2} + k\pi \]

\( \Leftrightarrow x = \frac{\pi }{6} + k\pi \)

Kết hợp với điều kiện suy ra \(x = - \frac{{5\pi }}{6} + k2\pi \;\left( {k \in \mathbb{Z}} \right)\) là nghiệm của phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Lời giải

Đáp án đúng là: B

Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0

Khi đó:

sin a và cot a trái dấu

Vậy khẳng định A là sai

Tích sin a.cot a mang dấu âm

Vậy khẳng định B là đúng

Tích sin a.cos a mang dấu âm

Vậy khẳng định C là sai

sin a và tan a trái dấu

Vậy khẳng định D là sai

Chọn đáp án B.

Lời giải

Lời giải

Media VietJack

Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a

Mặt khác SA ^ (ABC) Þ SA ^ BC (2)

Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a

Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP