Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: a2 + b2 + c2 + 3 ≥ 2(a + b + c)
⇔ a2 + b2 + c2 + 3 – 2(a + b + c) ≥ 0
⇔ a2 – 2a + 1 + b2 – 2b + 1 + c2 – 2c + 1 ≥ 0
⇔ (a – 1)2 + (b – 1)2 + (c – 1)2 ≥ 0 (luôn đúng)
Vậy ta có điều phải chứng minh.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + 3x + d (a, d ∈ ℝ) có đồ thị như hình bên. Mệnh đề nào dưới đây đúng?
Câu 2:
Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?
Câu 4:
Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên.
a)
Câu 5:
Cho tam giác ABC với A(-3; 6); B(9; -10) và G là trọng tâm. Tìm tọa độ điểm C
Câu 7:
b) Tìm tất cả các giá trị m để phương trình có 2 nghiêm x1, x2 thỏa mãn x1 – 2x2 = 3.
về câu hỏi!