Câu hỏi:

19/08/2025 1,488 Lưu

Chứng minh rằng:

a) (a + b + c)2 ≤ 3(a2 + b2 + c2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có: (a + b + c)2 ≤ 3(a2 + b2 + c2)

a2 + b2 + c2 + 2ab + 2ac + 2bc ≤ 3a2 + 3b2 + 3c2

-2a2 – 2b2 – 2c2 + 2ab + 2ac + 2bc ≤ 0

-(a – b)2 – (b – c)2 – (c – a)2 ≤ 0 (đúng với mọi a, b, c)

Dấu “=” xảy ra khi a = b = c.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Ta có:  limx+y= đồ thị nhánh ngoài cùng của hàm số hướng đi xuống nên hệ số a < 0.

Giao điểm của đồ thị hàm số với trục tung Oy: x = 0 là điểm nằm bên dưới trục hoành nên khi x = 0 y = d < 0

Vậy đáp án đúng là D.

Lời giải

Đáp án đúng là: D

Ta có:  AM2=AC2+AB22BC24=a2+a22a24=3a4

 AM=3a2AM=3a2

Đáp án đúng là: D

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP