Hai bạn Nam và Tuấn cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Nam và Tuấn có chung đúng một mã đề.
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
Ta có chọn môn chung mã đề có 2 cách. Vì môn đó có 6 mã đề khác nhau nên xác suất chung mã đề ở mỗi môn là \(\frac{1}{6}\) và khác mã đề ở môn còn lại là \(\frac{5}{6}\)
Suy ra xác suất cần tìm là: \(P = 2.\frac{1}{6}.\frac{5}{6} = \frac{5}{{18}}\)
Vậy ta chọn đáp án C.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Lời giải

Vì tam giác ABC vuông cân tại C
Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)
Ta có PM // BC và AC ⊥ CB
Suy ra PM ⊥ AC
Do đó tam giác APM vuông tại P
Lại có \(\widehat {PAM} = 45^\circ \)
Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)
Do đó tam giác APM vuông cân tại P
Suy ra PA = PM
Mà PA = CQ (giả thiết)
Suy ra PM = CQ
Xét tứ giác PCQM có
PM = CQ
Mà PM // CQ
Suy ra PCQM là hình bình hành
Lại có: \(\widehat C = 90^\circ \)
Suy ra PCQM là hình chữ nhật
Vậy PCQM là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.