7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 40)
40 người thi tuần này 4.6 60.8 K lượt thi 46 câu hỏi 50 phút
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Đặt HC = x (cm)
Xét tam giác ABC vuông tại A có AH ⊥ BC
Theo hệ thức lượng trong tam giác vuông, ta có:
AC2 = CH . BC
\( \Rightarrow {20^2} = \left( {9 + x} \right)x\)
\( \Leftrightarrow {x^2} + 9x - 400 = 0\)
\( \Leftrightarrow \left( {x + 25} \right)\left( {x - 16} \right) = 0\)
\[ \Leftrightarrow \left[ \begin{array}{l}x = - 25\left( {ktm} \right)\\x = 16\end{array} \right.\]
Suy ra BC = BH + CH = 9 + 16 = 25 (cm)
Xét tam giác ABC vuông tại A có AH ⊥ BC
Theo hệ thức lượng trong tam giác vuông, ta có:
AH2 = CH . BH = 9 . 16 = 144
Suy ra AH = 12 (cm)
Vậy BC = 25 cm, AH = 12 cm.
Câu 2
Cho hàm số (P): y = x2 – 3x + 2 và (d): y = x + m. Tìm M để (d) và (P) cắt nhau tại hai điểm phân biệt.
Lời giải
Lời giải
Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình:
x2 – 3x + 2 = x + m
⇔ x2 – 4x + 2 – m = 0
Ta có: ∆’ = (–2)2 – (2 – m) = m + 2
Để d) và (P) cắt nhau tại hai điểm phân biệt thì ∆’ > 0
\( \Leftrightarrow m + 2 > 0\)
\( \Leftrightarrow m > - 2\)
Vậy m > –2 thì (d) và (P) cắt nhau tại hai điểm phân biệt.
Câu 3
Tìm tập hợp các giá trị của tham số thực m để hàm số \(y = \sqrt {{x^2} + 1} - m{\rm{x}} - 1\) đồng biến trên ℝ
Lời giải
Lời giải
Đáp án đúng là: D
Hàm số \(y = \sqrt {{x^2} + 1} - m{\rm{x}} - 1\)
\(y' = \frac{x}{{\sqrt {{x^2} + 1} }} - m\)
Hàm số luôn đồng biến khi và chỉ khi \(m \le \frac{x}{{\sqrt {{x^2} + 1} }}\)
Xét hàm số \(f\left( x \right) = \frac{x}{{\sqrt {{x^2} + 1} }};f'\left( x \right) = \frac{1}{{\sqrt {{{\left( {{x^2} + 1} \right)}^3}} }} > 0,\forall x\)
Suy ra f(x) luôn đồng biến trên ℝ
Mặt khác \(\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{\sqrt {{x^2} + 1} }} = - 1\)
Suy ra m ≤ –1
Vậy ta chọn đáp án D.
Câu 4
Cho hàm số y = (2m – 1)x + 3 – m có đồ thị (d). Xác định m để đường thẳng (d) song song với đồ thị hàm số y = 2x + 5.
Lời giải
Lời giải
Để đường thẳng (d) song song với đường thẳng y = 2x + 5 thì
\(\left\{ \begin{array}{l}2m--1 = 2\\3 - m \ne 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = \frac{3}{2}\\m \ne - 2\end{array} \right. \Leftrightarrow m = \frac{3}{2}\)
Vậy \(m = \frac{3}{2}\).
Câu 5
Tìm giá trị thực của tham số m để đường thẳng d: y = (2m – 1)x + 3 + m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1.
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Lời giải
Ta có: 6x3 + x2 = 2x
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\2{\rm{x}} - 1 = 0\\3{\rm{x}} + 2 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{1}{2}\\{\rm{x}} = \frac{{ - 2}}{3}\end{array} \right.\)
Vậy \[{\rm{x}} \in \left\{ {0;\frac{1}{2}; - \frac{2}{3}} \right\}\].
Câu 7
Cho điểm D nằm trong tam giác ABC sao cho \(\widehat {DAB} = \widehat {DBC} = \widehat {DCA} = \varphi \). Chứng minh rằng: sin3φ = sin(A – φ). sin(B – φ). sin(C – φ).
Lời giải
Lời giải
Theo định lý sin, trong tam giác ABD ta có:
\(\frac{{DB}}{{\sin \varphi }} = \frac{{AD}}{{\sin \left( {B - \varphi } \right)}}\)
Trong tam giác BCD có:
\(\frac{{CD}}{{\sin \varphi }} = \frac{{BD}}{{\sin \left( {C - \varphi } \right)}}\)
Trong tam giác ACD có:
\(\frac{{AD}}{{\sin \varphi }} = \frac{{CD}}{{\sin \left( {A - \varphi } \right)}}\)
Suy ra:
\(\frac{{B{\rm{D}}}}{{\sin \varphi }}.\frac{{C{\rm{D}}}}{{\sin \varphi }}.\frac{{A{\rm{D}}}}{{\sin \varphi }} = \frac{{AD}}{{\sin \left( {B - \varphi } \right)}}.\frac{{BD}}{{\sin \left( {C - \varphi } \right)}}.\frac{{CD}}{{\sin \left( {A - \varphi } \right)}}\)
Do đó: sin3φ = sin(A – φ). sin(B – φ). sin(C – φ)
Vậy sin3φ = sin(A – φ). sin(B – φ). sin(C – φ).
Lời giải
Lời giải
– Định nghĩa:
+ Nếu đại lượng y liên hệ với đại lượng x theo công thức \(y = \frac{a}{x}\) hay xy = a (với a là hằng số khác 0) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a.
+ Khi đại lượng y tỉ lệ nghịch với đại lượng x thì x cũng tỉ lệ nghịch với đại lượng y và ta nói hai đại lượng đó tỉ lệ nghịch với nhau.
– Tính chất: Nếu hai đại lượng tỉ lệ nghịch với nhau thì:
+ Tích hai giá trị tương ứng của chúng luôn không đổi (bằng hệ số tỉ lệ).
+ Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
+ Nếu hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ a thì:
x1y1 = x2y2 = x3y3 = ... = a;
\(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_2}}}{{{y_1}}};\frac{{{x_1}}}{{{x_3}}} = \frac{{{y_3}}}{{{y_1}}};...\).
Lời giải
Giải:
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 5 nên \(y = \frac{5}{x}\)
Hay xy = 5
Suy ra \[{\rm{x}} = \frac{5}{y}\] (y ≠ 0)
Vậy x tỉ lệ nghịch với y theo hệ số tỉ lệ là 5.
Lời giải
Lời giải
Đáp án đúng là: A
Do A và B khác rỗng nên \(\left\{ {\begin{array}{*{20}{l}}{m - 1 < 4}\\{2m + 2 > - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 5}\\{m > - 2}\end{array}} \right.} \right.\)
⇔ –2 < m < 5
Để A ∩ B = ∅
\( \Leftrightarrow 2m + 2 \le m - 1 \Leftrightarrow m \le - 3\)
Mà –2 < m < 5 nên m ∈ ∅
Do đó không có giá trị nào của m để A ∩ B = ∅
Suy ra với mọi m ∈ (–2; 5) thì A ∩ B ≠ ∅
Vậy ta chọn đáp án A.
Câu 11
Rút gọn \(A = \sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a + 1} \right)}^2}}}} \) với a > 0.
Lời giải
Lời giải
Ta có:
\(A = \sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{(a + 1)}^2}}}} = \sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a + 1} \right)}^2}}} + \frac{{2\left( {a + 1 - a - 1} \right)}}{{a\left( {a + 1} \right)}}} \)
\( = \sqrt {1 + \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {a + 1} \right)}^2}}} + 2 \cdot 1 \cdot \frac{1}{a} - 2 \cdot 1 \cdot \frac{1}{{a + 1}} - 2 \cdot \frac{1}{a} \cdot \frac{1}{{a + 1}}} \)
\( = \sqrt {{{\left( {1 + \frac{1}{a} - \frac{1}{{a - 1}}} \right)}^2}} = 1 + \frac{1}{a} - \frac{1}{{a - 1}}\)
Vậy \[{\rm{A}} = 1 + \frac{1}{a} - \frac{1}{{a - 1}}\].
Lời giải
Lời giải
Đáp án đúng là: D
Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.
Vậy ta chọn đáp án D.
Lời giải
Lời giải
Khẳng định trên là sai vì:
Đường tròn có 1 tâm đối xứng và vô số trục đối xứng (mỗi đường kính là một trục đối xứng).
Câu 14
Chứng minh các bất đẳng thức \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}\) với a > 0 và b > 0.
Lời giải
Lời giải
Xét hiệu:
\(\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}}\)
\( = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}}\)
\( = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0\), vì \({\rm{a}}{\rm{, b}} > 0\)
Dấu “ = ” xảy ra khi a = b
Vậy \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}\) với a > 0 và b > 0.
Lời giải
Lời giải
a) Chia hai vế của phương trình cho 5x ta có:
\({\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} = 1\)
Xét \(f\left( {\rm{x}} \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x}\)
Ta có:
\(f'\left( x \right) = {\left( {\frac{3}{5}} \right)^x}\ln \frac{3}{5} + {\left( {\frac{4}{5}} \right)^x}\ln \frac{4}{5} < 0,\forall x\)
Do đó f(x) đồng biến trên R
Mặt khác:
f(2) = 1
Suy ra x = 2 là nghiệm duy nhât của phương trình
b) Ta có: 2x+1 – 4x = x – 1
⇔ 2x . 2 – 22x = x – 1
⇔ 2x (2 – 2x) = x – 1 (*)
+) Với x = 1 thì phương trình (*) ⇔ 21 (2 – 21) = 0
Suy ra x = 1 là nghiệm của phươn trình
+) Với x > 1 thì 2 < 2x và x – 1 > 0
Do đó 2x (2 – 2x) < 0 < x – 1
Khi đó phương trình (*) vô nghiệm
+) Với x < 1 thì 2 > 2x và x – 1 < 0
Do đó 2x (2 – 2x) > 0 > x – 1
Khi đó phương trình (*) vô nghiệm
Vậy x = 1 là nghiệm của phương trình.Câu 16
Tìm m để bất phương trình 2x2 – (2m + 1)x – 2m + 2 ≤ 0 nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\).
Lời giải
Lời giải
Đáp án đúng là: A
Đặt f(x) = 2x2 – (2m + 1)x – 2m + 2
Ta có ∆ = (2m + 1)2 – 4 . 2 . (2 – 2m) = 4m2 + 4m + 1 – 16 + 16m = 4m2 + 20m – 15
+) TH1: \(\Delta \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le \frac{{5 - \sqrt {10} }}{2}}\\{m \ge \frac{{5 + \sqrt {10} }}{2}}\end{array}} \right.\)
Suy ra f(x) ≥ 0 với mọi x (loại)
+) TH2: \(\Delta > 0 \Leftrightarrow m \in \left( {\frac{{5 - \sqrt {10} }}{2};\frac{{5 + \sqrt {10} }}{2}} \right)\)
Khi đó f(x) có hai nghiệm
\({x_1} = \frac{{2m + 1 - \sqrt \Delta }}{4},{x_2} = \frac{{2m + 1 + \sqrt \Delta }}{4}\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\)
Và f(x) ≤ 0 khi x1 ≤ x ≤ x2
Do đó bất phương trình nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} \le \frac{1}{2}}\\{{x_2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 1 \le 2\sqrt {\rm{\Delta }} }\\{7 - 2m \le \sqrt {\rm{\Delta }} }\end{array}} \right.\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(2m - 1)}^2} \le 4{\rm{\Delta }}}\\{{{(7 - 2m)}^2} \le {\rm{\Delta }}}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{20{m^2} - 84m + 61 \le 0}\\{{m^2} - 6m + 8 \le 0}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)
\(\; \Leftrightarrow 2 \le m \le \frac{{21 + 2\sqrt {34} }}{{10}}\)
Vậy ta chọn đáp án A.
Câu 17
Cho 4 điểm A(1; –2), B(0; 3), C(–3; 4), D(–1; 8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?
Lời giải
Lời giải
Đáp án đúng là: C
Ta có:
\(\overrightarrow {AD} \left( { - 2;10} \right),\overrightarrow {AB} \left( { - 1;5} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AB} \)
Suy ra 3 điểm A, B, D thẳng hàng
Vậy ta chọn đáp án C.
Câu 18
Tìm x biết:
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\);
b) \(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \).
Tìm x biết:
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\);
b) \(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \).
Lời giải
Lời giải
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\)
\( \Leftrightarrow \left| {2{\rm{x}} + 3} \right| = 4\)
+) Nếu 2x + 3 < 0 hay \[{\rm{x}} < \frac{{ - 3}}{2}\] thì
\(\left| {2{\rm{x}} + 3} \right| = 4\)
⇔ – 2x – 3 = 4
⇔ – 2x = 7
\( \Leftrightarrow x = \frac{{ - 7}}{2}\) (thỏa mãn)
+) Nếu 2x + 3 ≥ 0 hay \[{\rm{x}} \ge \frac{{ - 3}}{2}\] thì
\(\left| {2{\rm{x}} + 3} \right| = 4\)
⇔ 2x + 3 = 4
⇔ 2x = 1
\( \Leftrightarrow x = \frac{1}{2}\) (thỏa mãn)
Vậy \[{\rm{S}} = \left\{ {\frac{1}{2};\frac{{ - 7}}{2}} \right\}\].
b) Điều kiện xác định x ≥ 0
\(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \)
\( \Leftrightarrow 3\sqrt {\rm{x}} - \sqrt x = 6\)
\( \Leftrightarrow 2\sqrt {\rm{x}} = 6\)
\( \Leftrightarrow \sqrt {\rm{x}} = 3\)
⇔ x = 9 (thỏa mãn)
Vậy x = 9.
Câu 19
Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + x - xy - 2{y^2} - 2y = 0\\{x^2} + {y^2} = 1\end{array} \right.\).
Lời giải
Lời giải
Ta có:
\({x^2} + x - xy - 2{y^2} - 2xy = 0\)
\( \Leftrightarrow {x^2} - 2xy + xy - 2{y^2} + x - 2y = 0\)
\( \Leftrightarrow x(x - 2y) + y(x - 2y) + (x - 2y) = 0\)
\( \Leftrightarrow (x + y + 1)(x - 2y) = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + y + 1 = 0}\\{x - 2y = 0}\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + y = - 1}\\{x = 2y}\end{array}} \right.\)
Thay x = 2y vào phương trình x2 + y2 = 1 ta có:
\(4{y^2} + {y^2} = 1\)
\( \Leftrightarrow 5{y^2} = 1\)
\( \Leftrightarrow {y^2} = \frac{1}{5}\)
\( \Leftrightarrow y = \frac{{\sqrt 5 }}{5}\)
\( \Rightarrow x = 2 \cdot \frac{{\sqrt 5 }}{5} = \frac{{2\sqrt 5 }}{5}\)
Ta có \(x + y = - 1\)
\( \Leftrightarrow {(x + y)^2} - 2xy = 1\)
\( \Leftrightarrow 1 - 2xy = 1\)
\( \Leftrightarrow xy = 0\)
Lại có x + y = –1
Do đó x = –1 – y
Vậy nghiệm của hệ phương trình là:
Lời giải
Lời giải
Ta có:
\({x^2} - x - xy - 2{y^2} + 2y\)
\( = {x^2} - x + xy - 2{y^2} + 2y - 2xy\)
\( = x(x - 1 + y) - 2y(y - 1 + x)\)
\( = (x - 2y)(x + y - 1)\)
Câu 21
Các nhà toán học đã xấp xỉ số π bởi số \(\frac{{355}}{{113}}\). Hãy đánh giá sai số tuyệt đối biết 3,14159265 < π < 3,14159266.
Lời giải
Lời giải
Ta có:
\(\frac{{355}}{{113}} \approx 3,14159292... < 3,14159293\)
Do vậy
\(0 < \frac{{355}}{{113}} - \pi < 3,1415929 - 3,14159265 \approx 0,00000028\)
Vậy sai số tuyệt đối nhỏ hơn 2,8 . 10-7.
Câu 22
Cho điểm O ở ngoài mặt phẳng (α). Trong mặt phẳng (α) có đường thẳng d di động qua điểm A cố định. Gọi H, M lần lượt là hình chiếu của O trên mặt phẳng (α) và đường thẳng d. Độ dài đoạn OM lớn nhất khi
Lời giải
Lời giải
Đáp án đúng là: D
Ta có: OM ≤ OA
Nên OM lớn nhất bằng OA khi M ≡ A
Suy ra OA ⊥ d
Hay d ⊥ HA
Vậy ta chọn đáp án D.
Lời giải
Lời giải
Ta có:
[(–59) + 71] – [(–83) – (–95)]
= (–59) + 71 + 83 + (–95)
= 12 + (–12)
= 0.
Câu 24
Cho các điểm A(2; 3), B(9; 4), M(5; y) và P(x; 2).
a) Tìm y để tam giác AMB vuông tại M;
b) Tìm x để ba điểm A, B và P thẳng hàng.
Cho các điểm A(2; 3), B(9; 4), M(5; y) và P(x; 2).
a) Tìm y để tam giác AMB vuông tại M;
b) Tìm x để ba điểm A, B và P thẳng hàng.
Lời giải
Lời giải
a) \(\overrightarrow {{\rm{AM}}} = (3;{\rm{y}} - 3);\overrightarrow {{\rm{MB}}} = (4;4 - {\rm{y}})\)
AMB vuông tại \({\rm{M}}\)
\( \Leftrightarrow \widehat {{\rm{AMB}}} = 90^\circ \Leftrightarrow \overrightarrow {{\rm{AM}}} \cdot \overrightarrow {{\rm{MB}}} = 0\)
\( \Leftrightarrow 3 \cdot 4 + ({\rm{y}} - 3) \cdot (4 - {\rm{y}}) = 0\)
\( \Leftrightarrow 12 + 4{\rm{y}} - {{\rm{y}}^2} - 12 + 3{\rm{y}} = 0\)
\( \Leftrightarrow 7{\rm{y}} - {{\rm{y}}^2} = 0\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{y = 0}\\{y = 7}\end{array}} \right.\)
Vậy với M(5; 7) hoặc M(5; 0) thì tam giác ABM vuông tại M.
b) \(\overrightarrow {{\rm{AB}}} = (7;1),\overrightarrow {{\rm{AP}}} = ({\rm{x}} - 2, - 1)\)
\({\rm{A}},{\rm{P}},{\rm{B}}\) thẳng hàng
\( \Leftrightarrow \overrightarrow {{\rm{AP}}} \) và \(\overrightarrow {{\rm{AB}}} \) cùng phương
\( \Leftrightarrow \overrightarrow {{\rm{AP}}} = {\rm{k}} \cdot \overrightarrow {{\rm{AB}}} \)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{x}} - 2 = {\rm{k}} \cdot 7}\\{ - 1 = {\rm{k}} \cdot 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{k}} = - 1}\\{{\rm{x}} - 2 = - 7}\end{array}} \right.} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{k}} = - 1}\\{{\rm{x}} = - 5}\end{array}} \right.\)
Vậy P(–5; 2).
Lời giải
Lời giải
Ta có:
\(2x - ( - 17) = 15\)
\( \Rightarrow 2x + 17 = 15\)
\( \Rightarrow 2x = 15 - 17\)
\( \Rightarrow 2x = - 2\)
\( \Rightarrow x = \frac{{ - 2}}{2}\)
\( \Rightarrow x = - 1\)
Vậy x = –1.
Câu 26
Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC (M ∈ AB). Chứng minh tứ giác PCQM là hình chữ nhật.
Lời giải
Lời giải
Vì tam giác ABC vuông cân tại C
Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)
Ta có PM // BC và AC ⊥ CB
Suy ra PM ⊥ AC
Do đó tam giác APM vuông tại P
Lại có \(\widehat {PAM} = 45^\circ \)
Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)
Do đó tam giác APM vuông cân tại P
Suy ra PA = PM
Mà PA = CQ (giả thiết)
Suy ra PM = CQ
Xét tứ giác PCQM có
PM = CQ
Mà PM // CQ
Suy ra PCQM là hình bình hành
Lại có: \(\widehat C = 90^\circ \)
Suy ra PCQM là hình chữ nhật
Vậy PCQM là hình chữ nhật.
Câu 27
Cho đoạn thẳng AB có O là trung điểm và cho điểm M tùy ý. Chứng minh rằng: \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).
Lời giải
Lời giải
Vì O là trung điểm của AB nên OA = OB và \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow 0 \)
Do hai vectơ \(\overrightarrow {OA} ,\overrightarrow {OB} \) ngược hướng
Nên \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = 180^\circ \)
Do đó \(\overrightarrow {OA} \cdot \overrightarrow {OB} = |\overrightarrow {OA} | \cdot |\overrightarrow {OB} | \cdot \cos (\overrightarrow {OA} ,\overrightarrow {OB} )\)
\( = OA \cdot OB \cdot \cos 180^\circ = - OA \cdot OA = - O{A^2}\)
Với điểm M tùy ý ta có
\(\overrightarrow {MA} .\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right).\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\)
\(\begin{array}{l} = {\overrightarrow {MO} ^2} + \overrightarrow {MO} \cdot \overrightarrow {OB} + \overrightarrow {OA} \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = {\left| {\overrightarrow {MO} } \right|^2} + (\overrightarrow {OA} + \overrightarrow {OB} ) \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = M{O^2} + \vec 0 \cdot \overrightarrow {MO} + \left( { - O{A^2}} \right)\end{array}\)
Vậy \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).
Câu 28
Ảnh của đường tròn (C): x2 + y2 + 2y = 0 qua phép vị tự tâm O(0; 0) tỉ số k = –11 là đường tròn:
Lời giải
Lời giải
Đáp án đúng là: C
Gọi (C’) là ảnh của đường tròn (C) qua phép vị tự tâm O tỉ số k = –11
(C): x2 + y2 + 2y = 0
⇔ x2 + y2 + 2y + 1 = 1
⇔ x2 + (y + 1)2 = 1
Đường tròn (C) có tâm I(0; –1) và bán kính R = 1
Gọi I’ và R’ là tâm và bán kính của đường tròn (C’)
Ta có \(R' = \left| k \right|.R = \left| { - 11} \right|.1 = 11\)
Mặt khác \(\overrightarrow {OI'} = - 11\overrightarrow {OI} \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} = - 11{{\rm{x}}_I} = - 11.0 = 0\\{y_{I'}} = - 11{y_I} = - 11.\left( { - 1} \right) = 11\end{array} \right.\)
Suy ra I’(0; 11)
Do đó phương trình đường tròn (C’) là (x + 0)2 + (y – 11)2 = 112
Hay x2 + (y – 11)2 = 121
Vậy ta chọn đáp án C.
Lời giải
Lời giải
Hàm số \[{\rm{g}}\left( x \right){\rm{ = cosx + }}\frac{{{x^2}}}{2} - 1\] liên tục trên [0; +∞) có đạo hàm g’(x) = x – sinx
Ta có g’(x) > 0 với mọi x > 0 nên hàm số g(x) đồng biến trên [0; +∞)
Khi đó ta có
g(x) > g(0) = 0 với mọi x > 0
Hay \[{\rm{cosx + }}\frac{{{x^2}}}{2} - 1 > 0\] với mọi x > 0
⇔ \[{\rm{cosx > 1}} - \frac{{{x^2}}}{2}\] với mọi x > 0 (1)
Với mọi x < 0 thì – x > 0 nên theo (1) ta có
\(\cos ( - x) > 1 - \frac{{{{( - x)}^2}}}{2} \Leftrightarrow \cos x > 1 - \frac{{{x^2}}}{2}\) với mọi x < 0
Vậy \[{\rm{cosx > 1}} - \frac{{{x^2}}}{2}\] với mọi x ≠ 0.
Câu 30
Chứng minh định lí sau: Nếu trong tam giác vuông có 1 cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh ấy bằng 30°.
Lời giải
Lời giải
Trên tia đối của tia AC lấy điểm D sao cho AC = AD
Xét ∆ABC và ∆ABD có
AC = AD
\(\widehat {BAC} = \widehat {BA{\rm{D}}} = 90^\circ \)
AB là cạnh chung
Suy ra ∆ABC = ∆ABD (c.g.c)
Do đó \(\widehat {ABC} = \widehat {AB{\rm{D}}}\) (hai góc tương ứng), BC = BD (hai cạnh tương ứng)
Ta có \(AC = \frac{1}{2}BC\) (giả thiết)
AC = AD
Suy ra \(A{\rm{D}} = \frac{1}{2}BC\)
Do đó AC + AD = BC
Hay CD = BC
Mà BC = BD
Suy ra BC = BD = CD
Do đó tam giác BCD đều
Suy ra \(\widehat {DBC} = 60^\circ \)
Lại có \(\widehat {ABC} + \widehat {AB{\rm{D}}} = \widehat {CB{\rm{D}}}\), \(\widehat {ABC} = \widehat {AB{\rm{D}}}\) (chứng minh trên)
Do đó \(\widehat {ABC} = \widehat {AB{\rm{D}}} = \frac{{60^\circ }}{2} = 30^\circ \)
Vậy nếu trong tam giác vuông có 1 cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh ấy bằng 30°.
Câu 31
Giải phương trình: \[{\rm{cos2x}} - \cos x = \sqrt 3 \left( {\sin 2{\rm{x}} + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)\].
Lời giải
Lời giải
Ta có:
\[{\rm{cos2x}} - \cos x = \sqrt 3 \left( {\sin 2{\rm{x}} + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)\]
\( \Leftrightarrow \cos 2x - \sqrt 3 \sin 2x = \sqrt 3 \sin x + \cos x\)
\( \Leftrightarrow \frac{1}{2}\cos 2x - \frac{{\sqrt 3 }}{2}\sin 2x = \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x\)
\( \Leftrightarrow \cos \left( {2x + \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{3}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x + \frac{\pi }{3} = x - \frac{\pi }{3} + k2\pi }\\{2x + \frac{\pi }{3} = - x + \frac{\pi }{3} + k2\pi }\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - \frac{{2\pi }}{3} + k2\pi }\\{x = k\frac{{2\pi }}{3}}\end{array}} \right.\)
Vậy \[{\rm{x}} = \frac{{ - 2\pi }}{3} + k2\pi ,x = \frac{{k2\pi }}{3},k \in \mathbb{Z}\].
Câu 32
Hai bạn Nam và Tuấn cùng tham gia một kỳ thi thử trong đó có hai môn thi trắc nghiệm là Toán và Tiếng Anh. Đề thi của mỗi môn gồm cho học sinh một cách ngẫu nhiên. Tính xác suất để trong hai môn Toán và Tiếng Anh thì hai bạn Nam và Tuấn có chung đúng một mã đề.
Lời giải
Lời giải
Đáp án đúng là: C
Ta có chọn môn chung mã đề có 2 cách. Vì môn đó có 6 mã đề khác nhau nên xác suất chung mã đề ở mỗi môn là \(\frac{1}{6}\) và khác mã đề ở môn còn lại là \(\frac{5}{6}\)
Suy ra xác suất cần tìm là: \(P = 2.\frac{1}{6}.\frac{5}{6} = \frac{5}{{18}}\)
Vậy ta chọn đáp án C.
Câu 33
Tìm tất cả các giá trị của tham số m để khoảng cách từ giao điểm của hai đường thẳng \[{{\rm{d}}_1}:\left\{ \begin{array}{l}x = t\\y = 2 - t\end{array} \right.\] và d2: x – 2y + m = 0 đến gốc toạ độ bằng 2.
Lời giải
Lời giải
Đáp án đúng là: D
Ta có \[{{\rm{d}}_1}:\left\{ \begin{array}{l}x = t\\y = 2 - t\end{array} \right.\]
Suy ra y = 2 – x
Hay x + y – 2 = 0
Tọa độ giao điểm M của d1 và d2 là nghiệm của hệ phương trình
\(\left\{ \begin{array}{l}x + y - 2 = 0\\x - 2y + m = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y - 2 = 0\\3y - 2 - m = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2 - y\\y = \frac{{2 + m}}{3}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2 - \frac{{2 + m}}{3}\\y = \frac{{2 + m}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{4 - m}}{3}\\y = \frac{{2 + m}}{3}\end{array} \right.\)
Suy ra \(M\left( {\frac{{4 - m}}{3};\frac{{2 + m}}{3}} \right)\)
Ta có OM = 2
\( \Leftrightarrow {\left( {\frac{{4 - m}}{3}} \right)^2} + {\left( {\frac{{2 + m}}{3}} \right)^2} = 4\)
\( \Leftrightarrow 16 - 8m + {m^2} + {m^2} + 4m + 4 = 36\)
\( \Leftrightarrow 2{m^2} - 4m - 16 = 0\)
\( \Leftrightarrow {m^2} - 2m - 8 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}m = 4\\m = - 2\end{array} \right.\)
Vậy ta chọn đáp án D.
Lời giải
Lời giải
Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau.
Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.
Câu 35
Rút gọn phân thức: \(\frac{{{x^3} + {y^3} + {z^3} - 3xyz}}{{{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}}}\).
Lời giải
Lời giải
Ta có:
\( = \frac{{{{(x + y)}^3} - 3{x^2}y - 3x{y^2} - 3xyz + {z^3}}}{{{x^2} - 2xy + {y^2} + {y^2} - 2yz + {z^2} + {x^2} - 2xz + {z^2}}}\)
\( = \frac{{\left[ {{{(x + y)}^3} + {z^3}} \right] - 3xy(x + y + z)}}{{2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2xz}}\)
\( = \frac{{(x + y + z)\left[ {{{(x + y)}^2} - z(x + y) + {z^2}} \right] - 3xy(x + y + z)}}{{2\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)}}\)
\( = \frac{{(x + y + z)\left( {{x^2} + 2xy + {z^2} - xz - yz + {z^2} - 3xy} \right)}}{{2\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)}}\)
\( = \frac{{(x + y + z)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)}}{{2\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)}}\)
\( = \frac{{x + y + z}}{2} = \frac{1}{2}(x + y + z)\).
Lời giải
Lời giải
Ta có:
A = x2 – 3x + 5
\[{\rm{A}} = {x^2} - 2.\frac{3}{2}x + \frac{9}{4} + \frac{{11}}{4}\]
\(A = {\left( {x - \frac{3}{2}} \right)^2} + \frac{{11}}{4}\)
Vì \({\left( {x - \frac{3}{2}} \right)^2} \ge 0,\forall x\)
Nên \({\left( {x - \frac{3}{2}} \right)^2} + \frac{{11}}{4} \ge \frac{{11}}{4},\forall x\)
Dấu “ = ” xảy ra khi \[{\rm{x}} - \frac{3}{2} = 0 \Leftrightarrow x = \frac{3}{2}\]
Vậy giá trị nhỏ nhất của A bằng \(\frac{{11}}{4}\) khi \[x = \frac{3}{2}\].
Lời giải
Lời giải
Ta có:
Để đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2 thì số dư a – 30 = 0
Hay a = 30.
Vậy a = 30 thì đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Lời giải
Lời giải
Đáp án đúng là D
Đặt f(x) = x(1 – 2x)5 + x2(1 + 3x)10
Ta có:
Vậy hệ số của x5 trong khai triển ứng với k = 4 và i = 3 là:
\(C_5^4.\left( { - 2} \right){}^4 + C_{10}^3{.3^3} = 3320\).
Câu 39
Tính chu vi của hình chữ nhật có các cạnh là x = 3,456 ± 0,01 (m) và y = 12,732 ± 0,015 (m) và ước lượng sai số tuyệt đối mắc phải.
Lời giải
Lời giải
Đáp án đúng là D
Chu vi hình chữ nhật là:
\(L = 2(x + y) = 2(3,456 + 12,732) = 32,376(m)\)
Sai số tuyệt đối là:
\({\Delta _L} \le 2(0,01 + 0,015) = 0,05\)
Vậy ta chọn đáp án D.
Lời giải
Lời giải
Điều kiện xác định \[{\rm{x}} \ge \frac{{ - 10}}{3}\]
Ta có:
Vậy x = – 3.
Câu 41
Tìm a để hệ phương trình sau vô nghiệm: \(\left\{ \begin{array}{l}{x^2} + 7{\rm{x}} - 8 \le 0\\{a^2}x + 1 > 3 + \left( {3{\rm{a}} - 2} \right)x\end{array} \right.\).
Lời giải
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{{a^2}x + 1 > 3 + (3a - 2)x}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{\left( {{a^2} - 3a + 2} \right)x > 2}\end{array}} \right.\)
Ta đặt \({x^2} + 7x - 8 \le 0\,\,\,\left( a \right)\); \(\left( {{a^2} - 3a + 2} \right)x > 2\,\,\,\left( b \right)\)
Hệ (1) vô nghiệm khi và chỉ khi T(a) ∩ T(b) = ∅
Ta có x2 + 7x – 8 ≤ 0
⇔ (x + 8)(x – 1) ≤ 0
⇔ –8 ≤ x ≤ 1
Suy ra T(a) = [–8; 1]
Đặt a2 – 3a + 2 = m
+) Nếu m = 0 thì a2 – 3a + 2 = 0 \( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 2\end{array} \right.\)
Khi đó 0 . x > 2
Suy ra T(b) = ∅
Do đó hệ (1) vô nghiệm
+) Nếu m > 0 thì a2 – 3a + 2 > 0
Suy ra a ∈ (–∞; 1) ∪ (2; +∞)
Khi đó mx > 2
\( \Leftrightarrow x > \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \ge 1\)
⇔ 2 ≥ m = a2 – 3a + 2
⇔ a2 – 3a ≤ 0
⇔ 0 ≤ a ≤ 3
Kết hợp điều kiện a ∈ (–∞; 1) ∪ (2; +∞) ta được \(\left[ \begin{array}{l}0 \le a < 1\\2 < a \le 3\end{array} \right.\)
+) Nếu m < 0 thì a2 – 3a + 2 < 0
Suy ra a ∈ (1; 2)
Khi đó mx < 2
\( \Leftrightarrow x < \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \le - 8\)
⇔ 2 ≥ –8m = –8(a2 – 3a + 2)
⇔ 4a2 – 12a + 9 ≥ 0
⇔ (2a – 3)2 ≥ 0 (luôn đúng)
Suy ra a ∈ (1; 2) thì hệ (1) vô nghiệm
Vậy 0 ≤ a ≤ 3.
Câu 42
Tính giá trị của biểu thức:
a) x3 + 12x2 + 48x + 64 tại x = 6
b) x3 – 6x2 + 12x – 8 tại x = 22
Tính giá trị của biểu thức:
a) x3 + 12x2 + 48x + 64 tại x = 6
b) x3 – 6x2 + 12x – 8 tại x = 22
Lời giải
Lời giải
a) Ta có x3 + 12x2 + 48x + 64
= x3 + 3 . x2 . 4 + 3 . x . 42 + 43
= (x + 4)3
Tại x = 6, giá trị biểu thức bằng
(6 + 4)3 = 103 = 1 000.
b) Ta có x3 – 6x2 + 12x – 8
= x3 – 3 . x2 . 2 + 3 . x . 22 – 23
= (x – 2)3
Tại x = 22, giá trị biểu thức bằng
(22 – 2)3 = 203 = 8 000.
Câu 43
Cho parabol (P): y = x2 + x + 2 và đường thẳng (d): y = ax + 1. Tìm tất cả các giá trị thực của tham số a để (P) tiếp xúc với (d).
Lời giải
Lời giải
Đáp án dúng là A
Xét phương trình hoành độ giao điểm: x2 + x + 2 = ax + 1
⇔ x2 + (1 – a) x + 1 = 0
Để (P) tiếp xúc với (d) thì phương trình có nghiệm kép hay
\(\Delta = {(1 - a)^2} - 4 = 0 \Leftrightarrow a = - 1\) hoặc \(a = 3\)
Vậy ta chọn đáp án A.
Câu 44
Tìm số nguyên x:
a) 46 – x = –21 + (–87)
b) x – 96 = (443 – x) – 15
c) (–x + 281 +534) = 499 + (x – 48)
d) –(754 + x) = (x – 12 – 741) – 23.
Tìm số nguyên x:
a) 46 – x = –21 + (–87)
b) x – 96 = (443 – x) – 15
c) (–x + 281 +534) = 499 + (x – 48)
d) –(754 + x) = (x – 12 – 741) – 23.
Lời giải
Lời giải
a) 46 – x = –21 + (–87)
⇔ 46 – x = –108
⇔ x = 46 – (–108)
⇔ x = 154
Vậy x = 154.
b) x – 96 = (443 – x) – 15
⇔ x – 96 = 443 – x – 15
⇔ x – 96 = 428 – x
⇔ x + x = 428 + 96
⇔ 2x = 524
⇔ x = 262
Vậy x = 262.
c) (–x + 281 +534) = 499 + (x – 48)
⇔ –x + 281 +534 = 499 + x – 48
⇔ –x + 815 = 451 + x
⇔ 815 – 451 = x + x
⇔ 364 = 2x
⇔ 182 = x
Vậy x = 182.
d) –(754 + x) = (x – 12 – 741) – 23
⇔ –754 – x = x – 12 – 741 – 23
⇔ –754 – x = x – 776
⇔ –754 + 776 = x + x
⇔ 22 = 2x
⇔ 11 = x
Vậy x = 11.
Lời giải
Lời giải
Gọi (a, b) = d
Suy ra a = dm, b = dn, trong đó m, n, d ∈ N*
(m, n) = 1
Giả sử a > b nên m > n
Ta có:
a . b = (a, b) . [a, b]
⇔ dm . dn = d . 6 . d
⇔ mn = 6
Theo đề bài ta có a + b = 30
Suy ra dm + dn = 30
Hay m + n = 30
Vì m, n, d ∈ ℕ*, m > n nên ta có bảng sau:
m |
n |
d |
a |
b |
6 |
1 |
\(\frac{{30}}{7}\) (loại) |
|
|
3 |
2 |
6 |
18 |
12 |
Vậy (a, b) = (18, 12).
Câu 46
Biết số gần đúng là a = 37 975 421 có độ xác định d = 150. Hãy ước lượng sai số tương đối của a.
Lời giải
Lời giải
Đáp án đúng là: C
Các số đáng tin của a là 3, 7, 9, 7, 5
Suy ra cách viết chuẩn của a = 37 975 . 103
Sai số tương đối thỏa mãn \({\delta _a} \le \frac{{150}}{{37975421}} = 0,0000039\)
Vậy ta chọn đáp án C.
12163 Đánh giá
50%
40%
0%
0%
0%