Câu hỏi:

12/07/2024 926

Cho tam giác ABC vuông tại A có đường cao AH biết AC = 20 cm, BH = 9 cm. Tính BC và AH?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Đặt HC = x (cm)

Xét tam giác ABC vuông tại A có AH BC

Theo hệ thức lượng trong tam giác vuông, ta có:

AC2 = CH . BC

\( \Rightarrow {20^2} = \left( {9 + x} \right)x\)

\( \Leftrightarrow {x^2} + 9x - 400 = 0\)

\( \Leftrightarrow \left( {x + 25} \right)\left( {x - 16} \right) = 0\)

\[ \Leftrightarrow \left[ \begin{array}{l}x = - 25\left( {ktm} \right)\\x = 16\end{array} \right.\]

Suy ra BC = BH + CH = 9 + 16 = 25 (cm)

Xét tam giác ABC vuông tại A có AH BC

Theo hệ thức lượng trong tam giác vuông, ta có:

AH2 = CH . BH = 9 . 16 = 144

Suy ra AH = 12 (cm)

Vậy BC = 25 cm, AH = 12 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau. 

Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP