Câu hỏi:

27/07/2023 2,304

Chứng minh bất đẳng thức: \[{\rm{cosx > 1}} - \frac{{{x^2}}}{2}\] với mọi x ≠ 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Hàm số \[{\rm{g}}\left( x \right){\rm{ = cosx + }}\frac{{{x^2}}}{2} - 1\] liên tục trên [0; +∞) có đạo hàm g’(x) = x – sinx

Ta có g’(x) > 0 với mọi x > 0 nên hàm số g(x) đồng biến trên [0; +∞)

Khi đó ta có

g(x) > g(0) = 0 với mọi x > 0

Hay \[{\rm{cosx + }}\frac{{{x^2}}}{2} - 1 > 0\] với mọi x > 0

\[{\rm{cosx > 1}} - \frac{{{x^2}}}{2}\] với mọi x > 0                                         (1)

Với mọi x < 0 thì – x > 0 nên theo (1) ta có

\(\cos ( - x) > 1 - \frac{{{{( - x)}^2}}}{2} \Leftrightarrow \cos x > 1 - \frac{{{x^2}}}{2}\) với mọi x < 0

Vậy \[{\rm{cosx > 1}} - \frac{{{x^2}}}{2}\] với mọi x ≠ 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau. 

Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP