Câu hỏi:

27/07/2023 2,231 Lưu

Tìm m để bất phương trình 2x2 – (2m + 1)x – 2m + 2 ≤ 0 nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\).

A. \(2 \le m \le \frac{{21 + 2\sqrt {34} }}{{10}}\)
B. \(m \le \frac{{21 + 2\sqrt {34} }}{{10}}\)
C. m ≥ 2
D. \(\left[ \begin{array}{l}m < 2\\m > \frac{{21 + 2\sqrt {34} }}{{10}}\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Đặt f(x) = 2x2 – (2m + 1)x – 2m + 2

Ta có ∆ = (2m + 1)2 – 4 . 2 . (2 – 2m) = 4m2 + 4m + 1 – 16 + 16m = 4m2 + 20m – 15

+) TH1: \(\Delta \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le \frac{{5 - \sqrt {10} }}{2}}\\{m \ge \frac{{5 + \sqrt {10} }}{2}}\end{array}} \right.\)

Suy ra f(x) ≥ 0 với mọi x (loại)

+) TH2: \(\Delta > 0 \Leftrightarrow m \in \left( {\frac{{5 - \sqrt {10} }}{2};\frac{{5 + \sqrt {10} }}{2}} \right)\)

Khi đó f(x) có hai nghiệm

\({x_1} = \frac{{2m + 1 - \sqrt \Delta }}{4},{x_2} = \frac{{2m + 1 + \sqrt \Delta }}{4}\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\)

Và f(x) ≤ 0 khi x1 ≤ x ≤ x2

Do đó bất phương trình nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\)

\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} \le \frac{1}{2}}\\{{x_2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 1 \le 2\sqrt {\rm{\Delta }} }\\{7 - 2m \le \sqrt {\rm{\Delta }} }\end{array}} \right.\)

\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(2m - 1)}^2} \le 4{\rm{\Delta }}}\\{{{(7 - 2m)}^2} \le {\rm{\Delta }}}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)

\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{20{m^2} - 84m + 61 \le 0}\\{{m^2} - 6m + 8 \le 0}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)

\(\; \Leftrightarrow 2 \le m \le \frac{{21 + 2\sqrt {34} }}{{10}}\)

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Lời giải

Media VietJack

Vì tam giác ABC vuông cân tại C

Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)

Ta có PM // BC và AC CB

Suy ra PM AC

Do đó tam giác APM vuông tại P

Lại có \(\widehat {PAM} = 45^\circ \)

Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)

Do đó tam giác APM vuông cân tại P

Suy ra PA = PM

Mà PA = CQ (giả thiết)

Suy ra PM = CQ

Xét tứ giác PCQM có

PM = CQ

Mà PM // CQ

Suy ra PCQM là hình bình hành

Lại có: \(\widehat C = 90^\circ \)

Suy ra PCQM là hình chữ nhật

Vậy PCQM là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP