Tìm m để bất phương trình 2x2 – (2m + 1)x – 2m + 2 ≤ 0 nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: A
Đặt f(x) = 2x2 – (2m + 1)x – 2m + 2
Ta có ∆ = (2m + 1)2 – 4 . 2 . (2 – 2m) = 4m2 + 4m + 1 – 16 + 16m = 4m2 + 20m – 15
+) TH1: \(\Delta \le 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le \frac{{5 - \sqrt {10} }}{2}}\\{m \ge \frac{{5 + \sqrt {10} }}{2}}\end{array}} \right.\)
Suy ra f(x) ≥ 0 với mọi x (loại)
+) TH2: \(\Delta > 0 \Leftrightarrow m \in \left( {\frac{{5 - \sqrt {10} }}{2};\frac{{5 + \sqrt {10} }}{2}} \right)\)
Khi đó f(x) có hai nghiệm
\({x_1} = \frac{{2m + 1 - \sqrt \Delta }}{4},{x_2} = \frac{{2m + 1 + \sqrt \Delta }}{4}\left( {{{\rm{x}}_1} < {{\rm{x}}_2}} \right)\)
Và f(x) ≤ 0 khi x1 ≤ x ≤ x2
Do đó bất phương trình nghiệm đúng với mọi \(x \in \left[ {\frac{1}{2};2} \right]\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} \le \frac{1}{2}}\\{{x_2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2m - 1 \le 2\sqrt {\rm{\Delta }} }\\{7 - 2m \le \sqrt {\rm{\Delta }} }\end{array}} \right.\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(2m - 1)}^2} \le 4{\rm{\Delta }}}\\{{{(7 - 2m)}^2} \le {\rm{\Delta }}}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)
\(\; \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{20{m^2} - 84m + 61 \le 0}\\{{m^2} - 6m + 8 \le 0}\\{\frac{1}{2} \le m \le \frac{7}{2}}\end{array}} \right.\)
\(\; \Leftrightarrow 2 \le m \le \frac{{21 + 2\sqrt {34} }}{{10}}\)
Vậy ta chọn đáp án A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Lời giải

Vì tam giác ABC vuông cân tại C
Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)
Ta có PM // BC và AC ⊥ CB
Suy ra PM ⊥ AC
Do đó tam giác APM vuông tại P
Lại có \(\widehat {PAM} = 45^\circ \)
Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)
Do đó tam giác APM vuông cân tại P
Suy ra PA = PM
Mà PA = CQ (giả thiết)
Suy ra PM = CQ
Xét tứ giác PCQM có
PM = CQ
Mà PM // CQ
Suy ra PCQM là hình bình hành
Lại có: \(\widehat C = 90^\circ \)
Suy ra PCQM là hình chữ nhật
Vậy PCQM là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.