Câu hỏi:

13/07/2024 614

Tìm a để hệ phương trình sau vô nghiệm: \(\left\{ \begin{array}{l}{x^2} + 7{\rm{x}} - 8 \le 0\\{a^2}x + 1 > 3 + \left( {3{\rm{a}} - 2} \right)x\end{array} \right.\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{{a^2}x + 1 > 3 + (3a - 2)x}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{\left( {{a^2} - 3a + 2} \right)x > 2}\end{array}} \right.\)

Ta đặt  \({x^2} + 7x - 8 \le 0\,\,\,\left( a \right)\); \(\left( {{a^2} - 3a + 2} \right)x > 2\,\,\,\left( b \right)\)

Hệ (1) vô nghiệm khi và chỉ khi T(a) ∩ T(b) =

Ta có x2 + 7x – 8 ≤ 0

(x + 8)(x – 1) ≤ 0

–8 ≤ x ≤ 1

Suy ra T(a) = [–8; 1]

Đặt a2 – 3a + 2 = m

+) Nếu m = 0 thì a2 – 3a + 2 = 0 \( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 2\end{array} \right.\)

Khi đó 0 . x > 2

Suy ra T(b) =

Do đó hệ (1) vô nghiệm

+) Nếu m > 0 thì a2 – 3a + 2 > 0

Suy ra a (–∞; 1) (2; +∞)

Khi đó mx > 2

\( \Leftrightarrow x > \frac{2}{m}\)

Ta có:

T(a) ∩ T(b) =

\( \Leftrightarrow \frac{2}{m} \ge 1\)

2 ≥ m = a2 – 3a + 2

a2 – 3a ≤ 0

0 ≤ a ≤ 3

Kết hợp điều kiện a (–∞; 1) (2; +∞) ta được \(\left[ \begin{array}{l}0 \le a < 1\\2 < a \le 3\end{array} \right.\)

+) Nếu m < 0 thì a2 – 3a + 2 < 0

Suy ra a (1; 2)

Khi đó mx < 2

\( \Leftrightarrow x < \frac{2}{m}\)

Ta có:

T(a) ∩ T(b) =

\( \Leftrightarrow \frac{2}{m} \le - 8\)

2 ≥ –8m = –8(a2 – 3a + 2)

4a2 – 12a + 9 ≥ 0

(2a – 3)2 ≥ 0 (luôn đúng)

Suy ra a (1; 2) thì hệ (1) vô nghiệm

Vậy 0 ≤ a ≤ 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau. 

Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay