Tìm a để hệ phương trình sau vô nghiệm: \(\left\{ \begin{array}{l}{x^2} + 7{\rm{x}} - 8 \le 0\\{a^2}x + 1 > 3 + \left( {3{\rm{a}} - 2} \right)x\end{array} \right.\).
Quảng cáo
Trả lời:
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{{a^2}x + 1 > 3 + (3a - 2)x}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{\left( {{a^2} - 3a + 2} \right)x > 2}\end{array}} \right.\)
Ta đặt \({x^2} + 7x - 8 \le 0\,\,\,\left( a \right)\); \(\left( {{a^2} - 3a + 2} \right)x > 2\,\,\,\left( b \right)\)
Hệ (1) vô nghiệm khi và chỉ khi T(a) ∩ T(b) = ∅
Ta có x2 + 7x – 8 ≤ 0
⇔ (x + 8)(x – 1) ≤ 0
⇔ –8 ≤ x ≤ 1
Suy ra T(a) = [–8; 1]
Đặt a2 – 3a + 2 = m
+) Nếu m = 0 thì a2 – 3a + 2 = 0 \( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 2\end{array} \right.\)
Khi đó 0 . x > 2
Suy ra T(b) = ∅
Do đó hệ (1) vô nghiệm
+) Nếu m > 0 thì a2 – 3a + 2 > 0
Suy ra a ∈ (–∞; 1) ∪ (2; +∞)
Khi đó mx > 2
\( \Leftrightarrow x > \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \ge 1\)
⇔ 2 ≥ m = a2 – 3a + 2
⇔ a2 – 3a ≤ 0
⇔ 0 ≤ a ≤ 3
Kết hợp điều kiện a ∈ (–∞; 1) ∪ (2; +∞) ta được \(\left[ \begin{array}{l}0 \le a < 1\\2 < a \le 3\end{array} \right.\)
+) Nếu m < 0 thì a2 – 3a + 2 < 0
Suy ra a ∈ (1; 2)
Khi đó mx < 2
\( \Leftrightarrow x < \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \le - 8\)
⇔ 2 ≥ –8m = –8(a2 – 3a + 2)
⇔ 4a2 – 12a + 9 ≥ 0
⇔ (2a – 3)2 ≥ 0 (luôn đúng)
Suy ra a ∈ (1; 2) thì hệ (1) vô nghiệm
Vậy 0 ≤ a ≤ 3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Lời giải

Vì tam giác ABC vuông cân tại C
Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)
Ta có PM // BC và AC ⊥ CB
Suy ra PM ⊥ AC
Do đó tam giác APM vuông tại P
Lại có \(\widehat {PAM} = 45^\circ \)
Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)
Do đó tam giác APM vuông cân tại P
Suy ra PA = PM
Mà PA = CQ (giả thiết)
Suy ra PM = CQ
Xét tứ giác PCQM có
PM = CQ
Mà PM // CQ
Suy ra PCQM là hình bình hành
Lại có: \(\widehat C = 90^\circ \)
Suy ra PCQM là hình chữ nhật
Vậy PCQM là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.