7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 54)
32 người thi tuần này 4.6 68.4 K lượt thi 48 câu hỏi 60 phút
- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
- Đề số 76
- Đề số 77
- Đề số 78
- Đề số 79
- Đề số 80
- Đề số 81
- Đề số 82
- Đề số 83
- Đề số 84
- Đề số 85
- Đề số 86
- Đề số 87
- Đề số 88
- Đề số 89
- Đề số 90
- Đề số 91
- Đề số 92
- Đề số 93
- Đề số 94
- Đề số 95
- Đề số 96
- Đề số 97
🔥 Đề thi HOT:
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: A
Phương trình: 3f(x2 – 4x) = m (1)
Đặt u = x2 – 4x
Ta có bảng biến thiên sau

Ta thấy:
+) Với u < –4, phương trình (1) vô nghiệm
+) Với u = –4, phương trình (1) có một nghiệm x = 2 > 0
+) Với –4 < u < 0, phương trình (1) có hai nghiệm x > 0
+) Với u ≥ 0, phương trình (1) có một nghiệm x > 0
Khi đó 3f(x2 – 4x) = m
\( \Rightarrow f\left( u \right) = \frac{m}{3}\) (2)
Ta thấy:
+) Nếu \(\frac{m}{3} = - 3 \Leftrightarrow m = - 9\) thì phương trình (2) có một nghiệm u = 0
Nên phương trình (1) có một nghiệm x > 0
+) Nếu \( - 3 < \frac{m}{3} < - 2 \Leftrightarrow - 9 < m < - 6\) thì phương trình (2) có một nghiệm u > 0 và một nghiệm u ∈ (–2; 0)
Nên phương trình (1) có ba nghiệm x > 0
+) Nếu \(\frac{m}{3} = - 2 \Leftrightarrow m = - 6\) thì phương trình (2) có một nghiệm u = –4, một nghiệm u ∈ (–2; 0) và một nghiệm u > 0
Nên phương trình (1) có bốn nghiệm x > 0
+) Nếu \( - 2 < \frac{m}{3} < 2 \Leftrightarrow - 6 < m < 6\) thì phương trình (2) có một nghiệm u < –4, hai nghiệm u ∈ (–4; 0) và một nghiệm u > 0
Nên phương trình (1) có năm nghiệm x > 0
+) Nếu \(\frac{m}{3} = 2 \Leftrightarrow m = 6\) thì phương trình (2) có một nghiệm u < –4, một nghiệm u = –2 và một nghiệm u > 0
Nên phương trình (1) có ba nghiệm x > 0
+) Nếu \(\frac{m}{3} > 2 \Leftrightarrow m > 6\) thì phương trình (2) có một nghiệm u < –4 và một nghiệm u > 0
Nên phương trình (1) có một nghiệm x > 0
Suy ra –9 < m ≤ 6
Do đó m ∈ {–8; –7; –6; –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5; 6}
Vậy ta chọn đáp án A.
Lời giải
\(y' = \frac{{ - \left( {{x^2} - 2{\rm{x}} - m} \right)}}{{{{\left( {1 - x} \right)}^2}}}\)
Để hàm số \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có 2 cực trị
⇔ y’ = 0 có hai nghiệm phân biệt
⇔ x2 – 2x – m = 0 có hai nghiệm phân biệt
Điều kiện \(\left\{ \begin{array}{l}f\left( 1 \right) = - 1 - m \ne 0\\\Delta ' = 1 + m > 0\end{array} \right. \Leftrightarrow m > - 1\)
Theo định lý Vi – ét, hai nghiệm của phương trình thỏa mãn
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - m\end{array} \right.{\rm{ }}(1)\)
Khoảng cách giữa hai điểm cực trị là
\({d^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( { - {x_1} + \frac{{m + 1}}{{1 - {x_1}}} + {x_2} - \frac{{m + 1}}{{1 - {x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {x_1}^2 - 2{{\rm{x}}_1}{x_2} + {x_2}^2 + {\left( {{x_2} - {x_1} + \frac{{\left( {m + 1} \right)\left( {1 - {x_2}} \right) - \left( {m + 1} \right)\left( {1 - {x_1}} \right)}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow \left( {{x_1}^2 + 2{{\rm{x}}_1}{x_2} + {x_2}^2} \right) - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{m - m{{\rm{x}}_2} + 1 - {x_2} - m + m{{\rm{x}}_1} - 1 + {x_1}}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - {x_1} - {x_2} + {x_1}{x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {2^2} - 4.\left( { - m} \right) + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - 2 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( { - 1 - m} \right) - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{ - {x_2} - m{{\rm{x}}_2} + {x_1} + m{{\rm{x}}_1} - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{2{x_2} + 2m{{\rm{x}}_2} - 2{x_1} - 2m{{\rm{x}}_1}}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( {1 + m} \right)}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {{x_2} - {x_1}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - 2{{\rm{x}}_1}{x_2}} \right] = 100\)
\( \Leftrightarrow 4 + 4m + 4\left( {4 + 4m} \right) = 100\)
\( \Leftrightarrow 20m + 20 = 100\)
\( \Leftrightarrow 20m = 80\)
\( \Leftrightarrow m = 4\)
Vậy m = 4.
Lời giải
Ta có:
\(\begin{array}{l}{(x + y)^3} - {(x - y)^3}\\ = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} - {x^3} + 3{x^2}y - 3x{y^2} + {y^3}\\ = 6{x^2}y + 2{y^3}\\ = 2y\left( {3{x^2} + {y^2}} \right).\end{array}\)
Lời giải
Ta có:
x2 + 6x + 9
= x2 + 2 . 3 . x + 32
= (x + 3)2.
Lời giải
a) Điều kiện xác định a ≥ 0, a ≠ 1
\(A = \frac{1}{{2 + 2\sqrt a }} + \frac{1}{{2 - 2\sqrt a }} - \frac{{{a^2} + 1}}{{1 - {a^2}}}\)
\({\rm{A}} = \frac{1}{{2\left( {1 + \sqrt a } \right)}} + \frac{1}{{2\left( {1 - \sqrt a } \right)}} - \frac{{{a^2} + 1}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{1}{{2\left( {1 + \sqrt a } \right)}} + \frac{1}{{2\left( {1 - \sqrt a } \right)}} - \frac{{{a^2} + 1}}{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a } \right)\left( {1 + a} \right)}}\)
\(A = \frac{{\left( {1 - \sqrt a } \right)\left( {1 + a} \right) + \left( {1 + \sqrt a } \right)\left( {1 + a} \right) - \left( {{a^2} + 1} \right)2}}{{2\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\left( {1 + a} \right)}}\)
\(A = \frac{{1 + a - \sqrt a - a\sqrt a + 1 + a + \sqrt a + a\sqrt a - 2{a^2} + 2}}{{2\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{{2a - 2{a^2}}}{{2\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{{2a\left( {1 - a} \right)}}{{2\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{a}{{1 + a}}\)
b) Để \[{\rm{A}} < \frac{1}{3}\]\( \Leftrightarrow \frac{a}{{1 + a}} < \frac{1}{3}\)
\( \Leftrightarrow \frac{a}{{1 + a}} - \frac{1}{3} < 0\)\( \Leftrightarrow \frac{{3a - a - 1}}{{1 + a}} < 0\)
\( \Leftrightarrow 2{\rm{a}} - 1 < 0\)\( \Leftrightarrow {\rm{a}} < \frac{1}{2}\)
Mà a ≥ 0, a ≠ 1
Suy ra \({\rm{0}} \le {\rm{a}} < \frac{1}{2}\)
Vậy \({\rm{0}} \le {\rm{a}} < \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.