Quảng cáo
Trả lời:
Ta có:
\(\begin{array}{l}2{x^2} + 3x + 2 = 2\left( {{x^2} + \frac{3}{2}x + 1} \right) = 2\left( {{x^2} + 2 \cdot x \cdot \frac{3}{4} + \frac{9}{{16}} + \frac{7}{{16}}} \right)\\ = 2\left[ {{{\left( {x + \frac{3}{4}} \right)}^2} + \frac{7}{{16}}} \right] = 2{\left( {x + \frac{3}{4}} \right)^2} + \frac{7}{8}\end{array}\)
Vì \(2{\left( {x + \frac{3}{4}} \right)^2} \ge 0;\forall x\)
Nên \(2{\left( {x + \frac{3}{4}} \right)^2} + \frac{7}{8} > 0;\forall x\)
Mà x3 + 2x2 + 3x + 2 = y3
Suy ra x3 < y3
Giả sử y3 < (x + 2)3
⇔ x3 + 2x2 + 3x + 2 < x3 + 6x2 + 12x + 8
⇔ – 4x2 – 9x – 6 < 0
⇔ 4x2 + 9x + 6 > 0
\(\begin{array}{l} \Leftrightarrow 4{x^2} + 9x + 6 > 0\\ \Leftrightarrow 4\left( {{x^2} + \frac{9}{4}x + \frac{{81}}{{64}}} \right) + \frac{{15}}{{16}} > 0\\ \Leftrightarrow 4\left( {{x^2} + 2 \cdot x \cdot \frac{9}{8} + \frac{{81}}{{64}}} \right) + \frac{{15}}{{16}} > 0\\ \Leftrightarrow 4{\left( {x + \frac{9}{8}} \right)^2} + \frac{{15}}{{16}} > 0{\rm{ }}\end{array}\) (luôn đúng)
Do đó y3 < (x + 2)3
Mà x3 < y3
Nên x3 < y3 < (x + 2)3
Lại có y3 là lập phương của một số nguyên, giữa x3 và (x + 2)3 chỉ có 1 số lập phương duy nhất là (x + 1)3
Do đó y 3 = (x + 1)3
⇔ x3 + 2x2 + 3x + 2 = x3 + 3x2 + 3x + 1
⇔ x2 – 1 = 0
⇔ (x – 1)(x + 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 1 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{y^3} = 1 + 2 + 3 + 2 = 8\\{y^3} = - 1 + 2 - 3 + 2 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}y = 2\\y = 0\end{array} \right.\)
Vậy (x; y) = (1; 2) hoặc (x; y) = (–1; 0).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có:
\(P = {\log _{\sqrt[3]{a}}}{a^3} = {\log _{{a^{\frac{1}{3}}}}}{a^3} = 3.3{\log _a}a = 9\,\,\left( {a > 0,a \ne 1} \right)\)
Vậy ta chọn đáp án C.
Lời giải
Đáp án đúng là: C
Ta có: y’ > 0 ⇔ 3f’(x + 2) – 3x2 + 3 > 0
⇔ 3f’(x + 2) > 3x2 – 3
⇔ f’(x + 2) > x2 – 1
Đặt t = x + 2, suy ra x = t – 2.
Khi đó f’(t) > (t – 2)2 – 1
Chọn t sao cho \(\left\{ \begin{array}{l}{\left( {t - 2} \right)^2} - 1 < 0\\f'\left( t \right) > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < t - 2 < 1\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 < t < 3\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}1 < t < 2\\2 < t < 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}1 < x + 2 < 2\\2 < x + 2 < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\0 < x < 1\end{array} \right.\)
Suy ra hàm số đã cho đồng biến trên khoảng (–1; 0) và (0; 1).
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.