Câu hỏi:

16/08/2023 2,507

Cho tam giác ABC có cạnh a, b, c thỏa mãn bc = a2.

Chứng minh rằng sinB.sinC = sin2A và hb . hc = ha2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

• Ta có: \(\frac{{\sin {\rm{A}}}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c} = 2{\rm{R}}\)

Suy ra \(a = \frac{{\sin B}}{{2{\rm{R}}}};\,\,b = \frac{{\sin {\rm{A}}}}{{2{\rm{R}}}};\,\,c = \frac{{\sin C}}{{2{\rm{R}}}}\)

Mà bc = a2

Suy ra \(\frac{{\sin B}}{{2{\rm{R}}}}.\frac{{\sin C}}{{2{\rm{R}}}} = {\left( {\frac{{\sin {\rm{A}}}}{{2{\rm{R}}}}} \right)^2}\)\( \Leftrightarrow \frac{{\sin B.\sin C}}{{4{{\rm{R}}^2}}} = \frac{{{{\sin }^2}A}}{{4{{\rm{R}}^2}}}\)

Do đó sin B . sin C = sin2A

• Ta có: \[S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\]

Suy ra \[a = \frac{{2{\rm{S}}}}{{{h_a}}};b = \frac{{2{\rm{S}}}}{{{h_b}}};c = \frac{{2{\rm{S}}}}{{{h_c}}}\]

Mà bc = a2

Suy ra \[{\left( {\frac{{2{\rm{S}}}}{{{h_a}}}} \right)^2} = \frac{{2{\rm{S}}}}{{{h_b}}}.\frac{{2{\rm{S}}}}{{{h_c}}}\]

\[ \Leftrightarrow \frac{{4{{\rm{S}}^2}}}{{{h_a}^2}} = \frac{{{\rm{4}}{{\rm{S}}^2}}}{{{h_b}.{h_c}}}\]

Do đó hb . hc = ha2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có:

\(P = {\log _{\sqrt[3]{a}}}{a^3} = {\log _{{a^{\frac{1}{3}}}}}{a^3} = 3.3{\log _a}a = 9\,\,\left( {a > 0,a \ne 1} \right)\)

Vậy ta chọn đáp án C.

Lời giải

Đáp án đúng là: C

Ta có: y’ > 0 3f’(x + 2) – 3x2 + 3 > 0

3f’(x + 2) > 3x2 – 3

f’(x + 2) > x2 – 1

Đặt t = x + 2, suy ra x = t – 2.

Khi đó f’(t) > (t – 2)2 – 1

Chọn t sao cho \(\left\{ \begin{array}{l}{\left( {t - 2} \right)^2} - 1 < 0\\f'\left( t \right) > 0\end{array} \right.\)           

\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < t - 2 < 1\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 < t < 3\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}1 < t < 2\\2 < t < 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}1 < x + 2 < 2\\2 < x + 2 < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\0 < x < 1\end{array} \right.\)

Suy ra hàm số đã cho đồng biến trên khoảng (–1; 0) và (0; 1).

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP