Câu hỏi:

16/08/2023 7,465

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Phương trình: 3f(x2 – 4x) = m                                (1)

Đặt u = x2 – 4x

Ta có bảng biến thiên sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 2)

Ta thấy:

+) Với u < –4, phương trình (1) vô nghiệm

+) Với u = –4, phương trình (1) có một nghiệm x = 2 > 0

+) Với –4 < u < 0, phương trình (1) có hai nghiệm x > 0

+) Với u ≥ 0, phương trình (1) có một nghiệm x > 0

Khi đó 3f(x2 – 4x) = m             

\( \Rightarrow f\left( u \right) = \frac{m}{3}\)                  (2)

Ta thấy:

+) Nếu \(\frac{m}{3} = - 3 \Leftrightarrow m = - 9\) thì phương trình (2) có một nghiệm u = 0

Nên phương trình (1) có một nghiệm x > 0

+) Nếu \( - 3 < \frac{m}{3} < - 2 \Leftrightarrow - 9 < m < - 6\) thì phương trình (2) có một nghiệm u > 0 và một nghiệm u (–2; 0)

Nên phương trình (1) có ba nghiệm x > 0

+) Nếu \(\frac{m}{3} = - 2 \Leftrightarrow m = - 6\) thì phương trình (2) có một nghiệm u = –4, một nghiệm u (–2; 0) và một nghiệm u > 0

Nên phương trình (1) có bốn nghiệm x > 0

+) Nếu \( - 2 < \frac{m}{3} < 2 \Leftrightarrow - 6 < m < 6\) thì phương trình (2) có một nghiệm u < –4, hai nghiệm u (–4; 0) và một nghiệm u > 0

Nên phương trình (1) có năm nghiệm x > 0

+) Nếu \(\frac{m}{3} = 2 \Leftrightarrow m = 6\) thì phương trình (2) có một nghiệm u < –4, một nghiệm u = –2 và một nghiệm u > 0

Nên phương trình (1) có ba nghiệm x > 0

+) Nếu \(\frac{m}{3} > 2 \Leftrightarrow m > 6\) thì phương trình (2) có một nghiệm u < –4 và một nghiệm u > 0

Nên phương trình (1) có một nghiệm x > 0

Suy ra –9 < m ≤ 6

Do đó m {–8; –7; –6; –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5; 6}

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 13,183

Câu 2:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 16/08/2023 11,559

Câu 3:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 12/07/2024 4,014

Câu 4:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 12/07/2024 2,688

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB.

a) Tìm giao tuyến của (SAC) và (SBD)

b) Tìm giao điểm DN với (SAC)

c) Chứng minh MN // (SCD).

Xem đáp án » 16/08/2023 2,361

Câu 6:

Tập xác định của hàm số y = logx là:

Xem đáp án » 16/08/2023 2,354

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store