Câu hỏi:

12/07/2024 387

Rút gọn các phân thức sau:

a) \(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)

b) \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)

c) \(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4x - 5}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có:

\(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)

\( = \frac{{(y - x)\left( {{y^2} + xy + {x^2}} \right)}}{{{{(x - y)}^3}}}\)

\( = - \frac{{{x^2} + xy + {y^2}}}{{{{\left( {x - y} \right)}^2}}}\)

b) Ta có: \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)

\( = \frac{{\left( {{x^5} - {x^2}} \right) + {x^2} + x + 1}}{{x\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2}\left( {{x^3} - 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^2}(x - 1)\left( {{x^2} + x + 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{\left( {{x^2} + x + 1} \right)\left( {{x^3} - {x^2} + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)

\( = \frac{{{x^3} - {x^2} + 1}}{x}\)

c) Ta có:

\(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4{\rm{x}} - 5}}\)

\( = \frac{{2{x^2} + 2x - 3x - 3}}{{{x^2} + x - 5x - 5}}\)

\( = \frac{{2x\left( {x + 1} \right) - 3\left( {x + 1} \right)}}{{x\left( {x + 1} \right) - 5\left( {x + 1} \right)}}\)

\( = \frac{{\left( {x + 1} \right)\left( {2x - 3} \right)}}{{\left( {x + 1} \right)\left( {x - 5} \right)}}\)

\( = \frac{{2x - 3}}{{x - 5}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có:

\(P = {\log _{\sqrt[3]{a}}}{a^3} = {\log _{{a^{\frac{1}{3}}}}}{a^3} = 3.3{\log _a}a = 9\,\,\left( {a > 0,a \ne 1} \right)\)

Vậy ta chọn đáp án C.

Lời giải

Đáp án đúng là: C

Ta có: y’ > 0 3f’(x + 2) – 3x2 + 3 > 0

3f’(x + 2) > 3x2 – 3

f’(x + 2) > x2 – 1

Đặt t = x + 2, suy ra x = t – 2.

Khi đó f’(t) > (t – 2)2 – 1

Chọn t sao cho \(\left\{ \begin{array}{l}{\left( {t - 2} \right)^2} - 1 < 0\\f'\left( t \right) > 0\end{array} \right.\)           

\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < t - 2 < 1\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 < t < 3\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}1 < t < 2\\2 < t < 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}1 < x + 2 < 2\\2 < x + 2 < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\0 < x < 1\end{array} \right.\)

Suy ra hàm số đã cho đồng biến trên khoảng (–1; 0) và (0; 1).

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP