Câu hỏi:
16/08/2023 227Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC
b) AC2 = CH . BC
c) \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat {BAC} = \widehat {AHB} = 90^\circ \)
\(\widehat B\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AB}}{{BH}} = \frac{{BC}}{{AB}}\)
Suy ra AB2 = BH . BC
b) Xét tam giác ABC và tam giác HAC có:
\(\widehat {BAC} = \widehat {AHC} = 90^\circ \)
\(\widehat C\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AC}}{{CH}} = \frac{{BC}}{{AC}}\)
Suy ra AC2 = BC . CH
c) Vì (chứng minh câu a)
Nên \(\frac{{AH}}{{AC}} = \frac{{AB}}{{BC}}\)
Suy ra \(\frac{{A{H^2}}}{{A{C^2}}} = \frac{{A{B^2}}}{{B{C^2}}}\) (1)
Vì (chứng minh câu b)
Nên \(\frac{{BC}}{{AC}} = \frac{{AB}}{{AH}}\)
Suy ra \(\frac{{A{H^2}}}{{A{B^2}}} = \frac{{A{C^2}}}{{B{C^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{{A{H^2}}}{{A{C^2}}} + \frac{{A{H^2}}}{{A{B^2}}} = \frac{{A{B^2}}}{{B{C^2}}} + \frac{{A{C^2}}}{{B{C^2}}} = \frac{{A{B^2} + A{C^2}}}{{B{C^2}}}\)
Mà tam giác ABC vuông tại A nên BC2 = AB2 + AC2
Do đó \(\frac{{A{H^2}}}{{A{C^2}}} + \frac{{A{H^2}}}{{A{B^2}}} = 1\)
Suy ra \(\frac{1}{{A{C^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{A{H^2}}}\)
Vậy \(\frac{1}{{A{C^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{A{H^2}}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB.
a) Tìm giao tuyến của (SAC) và (SBD)
b) Tìm giao điểm DN với (SAC)
c) Chứng minh MN // (SCD).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!