Câu hỏi:

12/07/2024 1,925

Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz. Chứng minh rằng:

\(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(a = \frac{1}{x};b = \frac{1}{y};c = \frac{1}{z}\)

Suy ra a, b, c > 0 và \(a + b + c = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{{yz + x{\rm{z}} + xy}}{{xyz}} = 1\)

Khi đó \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \)

\( \Leftrightarrow \sqrt {\frac{1}{a} + \frac{1}{{bc}}} + \sqrt {\frac{1}{b} + \frac{1}{{ac}}} + \sqrt {\frac{1}{c} + \frac{1}{{ab}}} \ge \sqrt {\frac{1}{{abc}}} + \sqrt {\frac{1}{a}} + \sqrt {\frac{1}{b}} + \sqrt {\frac{1}{c}} \)

\( \Leftrightarrow \sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + 1\)

Ta có:

\(\begin{array}{l}\sqrt {a + bc} = \sqrt {a(a + b + c) + bc} = \sqrt {{a^2} + a(b + c) + bc} \ge \sqrt {{a^2} + 2a\sqrt {bc} + bc} \\ \Rightarrow \sqrt {a + bc} \ge \sqrt {{{(a + \sqrt {bc} )}^2}} = a + \sqrt {bc} \end{array}\)

Chứng minh tương tự:

\(\begin{array}{l}\sqrt {b + ac} \ge b + \sqrt {ac} ;\\\sqrt {c + ab} \ge c + \sqrt {ab} \end{array}\)

Cộng theo vế các bất đẳng thức trên ta được

\(\sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + a + b + c\)

\( \Leftrightarrow \sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + 1\)

Suy ra \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \)

Dấu “ = ” xảy ra khi \(a = b = c = \frac{1}{3} \Leftrightarrow x = y = z = 3\)

Vậy \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 24,080

Câu 2:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 16/08/2023 12,621

Câu 3:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem đáp án » 16/08/2023 8,571

Câu 4:

Tập xác định của hàm số y = logx là:

Xem đáp án » 16/08/2023 7,186

Câu 5:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 12/07/2024 7,093

Câu 6:

Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?

Xem đáp án » 16/08/2023 3,803

Câu 7:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 12/07/2024 2,837
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua