Câu hỏi:

16/08/2023 194

Chứng minh với ab ≥ 1 thì \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\)

\( \Leftrightarrow \frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} - \frac{2}{{1 + ab}} \ge 0\)

\( \Leftrightarrow \left( {\frac{1}{{1 + {a^2}}} - \frac{1}{{1 + ab}}} \right) + \left( {\frac{1}{{1 + {b^2}}} - \frac{1}{{1 + ab}}} \right) \ge 0\)

\( \Leftrightarrow \frac{{1 + ab - 1 - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{1 + ab - 1 - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{ab - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{ab - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {ab - {a^2}} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)\left( {ab - {b^2}} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{a\left( {b - a} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)b\left( {a - b} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a\left( {1 + {b^2}} \right) - b\left( {1 + {a^2}} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a + a{b^2} - b - {a^2}b} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {\left( {a - b} \right) - ab\left( {a - b} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

Vì ab ≥ 1 nên ab – 1 ≥ 0

Mà (b – a)2 ≥ 0

Suy ra (b – a)2(ab – 1) ≥ 0

Vì (a2 + 1) > 0, (b2 + 1) > 0, (ab + 1) > 0

Nên (a2 + 1)(b2 + 1)(ab + 1) > 0

Suy ra \(\frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\) với mọi a, b, ab ≥ 1

Vậy \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 24,080

Câu 2:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 16/08/2023 12,621

Câu 3:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem đáp án » 16/08/2023 8,571

Câu 4:

Tập xác định của hàm số y = logx là:

Xem đáp án » 16/08/2023 7,186

Câu 5:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 12/07/2024 7,093

Câu 6:

Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?

Xem đáp án » 16/08/2023 3,803

Câu 7:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 12/07/2024 2,837
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua