Câu hỏi:
16/08/2023 301Cho Ax, By là các tiếp tuyến của \(\left( {O;\frac{{AB}}{2}} \right)\). Tiếp tuyến tại M của (O) cắt Ax, By, AB lần lượt tại C, D, E. AD và BC cắt nhau tại N
a) Tính AC. BD theo AB
b) Chứng minh MN vuông góc AB
c) So sánh 2 tỉ số \(\frac{{CM}}{{CE}};\frac{{DM}}{{DE}}\).
d) Chứng minh rằng đường thẳng EN đi qua trung điểm của các đoạn thẳng AC, BD.Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C
Suy ra CA = CM, OC là tia phân giác của \(\widehat {AOM}\)
Do đó \(\widehat {COM} = \frac{1}{2}\widehat {AOM}\)
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D
Suy ra DB = DM, OD là tia phân giác của \(\widehat {BOM}\)
Do đó \(\widehat {DOM} = \frac{1}{2}\widehat {BOM}\)
Ta có: \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)
Do đó tam giác COD vuông tại O
Mà OM ⊥ CD
Suy ra OM2 = CM . DM (hệ thức lượng trong tam giác vuông)
Mà CA = CM, DB = DM, \(OM = \frac{1}{2}AB\)
Suy ra \(CA.DB = \frac{{A{B^2}}}{4}\)
b) Vì AC // BD nên \(\frac{{AC}}{{B{\rm{D}}}} = \frac{{AN}}{{N{\rm{D}}}} = \frac{{CN}}{{NB}}\)
Mà CA = CM, DB = DM (chứng minh câu a)
Suy ra \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)
Xét tam giác ACD có \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)
Suy ra MN // CA
Mà AC ⊥ AB
Do đó MN ⊥ AB
c) Xét tam giác ACE vuông tại A có
\[\sin \widehat E = \frac{{CA}}{{CE}}\]
Mà CA = CM
Suy ra \[\sin \widehat E = \frac{{CM}}{{CE}}\] (1)
Xét tam giác EBD vuông tại B có
\[\sin \widehat E = \frac{{B{\rm{D}}}}{{DE}}\]
Mà BD = DM
Suy ra \[\sin \widehat E = \frac{{DM}}{{DE}}\] (2)
Từ (1) và (2) suy ra \(\frac{{CM}}{{CE}} = \frac{{DM}}{{DE}}\)
d) Gọi giao điểm của MN với AB là H
Giao điểm của AN với AC và BD lần lượt là I và K
Xét (O) đường kính AB có MN ⊥ AO
Mà MN cắt AO tại H
Suy ra H là trung điểm của AO
Xét tam giác DBE có MH // BD
Suy ra \(\frac{{MN}}{{DK}} = \frac{{NH}}{{BK}}\)
Do đó \(\frac{{MN}}{{NH}} = \frac{{DK}}{{BK}}\) (3)
Gọi giao điểm của MB và HD là E
Xét tam giác DKE có MN // KD
Suy ra \(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)
Xét tam giác BKE có MN // BK
Suy ra \(\frac{{NM}}{{BK}} = \frac{{NE}}{{EK}}\)
Mà \(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)
Do đó \(\frac{{NH}}{{DK}} = \frac{{MN}}{{BK}}\)
Hay \(\frac{{NM}}{{MH}} = \frac{{BK}}{{DK}}\) (4)
Từ (3) và (4) suy ra \(\frac{{DK}}{{BK}} = \frac{{BK}}{{DK}}\)
Do đó DK = BK, MN = NH
Hay EN đi qua trung điểm K của đoạn thẳng BD
Xét tam giác EHM có CA // MH
Suy ra \(\frac{{CI}}{{MN}} = \frac{{AI}}{{NH}}\)
Mà MN = NH
Suy ra CI = AI
Hay EN đi qua trung điểm I của đoạn thẳng AC
Vậy EN đi qua trung điểm của các đoạn thẳng AC, BD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!