Câu hỏi:

16/08/2023 265

Cho Ax, By là các tiếp tuyến của \(\left( {O;\frac{{AB}}{2}} \right)\). Tiếp tuyến tại M của (O) cắt Ax, By, AB lần lượt tại C, D, E. AD và BC cắt nhau tại N

a) Tính AC. BD theo AB

b) Chứng minh MN vuông góc AB

c) So sánh 2 tỉ số \(\frac{{CM}}{{CE}};\frac{{DM}}{{DE}}\).

d) Chứng minh rằng đường thẳng EN đi qua trung điểm của các đoạn thẳng AC, BD.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho Ax, By là các tiếp tuyến của (o; AB/2). Tiếp tuyến tại M của (O) cắt Ax, By (ảnh 1)

a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C

Suy ra CA = CM, OC là tia phân giác của \(\widehat {AOM}\)

Do đó \(\widehat {COM} = \frac{1}{2}\widehat {AOM}\)

Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D

Suy ra DB = DM, OD là tia phân giác của \(\widehat {BOM}\)

Do đó \(\widehat {DOM} = \frac{1}{2}\widehat {BOM}\)

Ta có: \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)

Do đó tam giác COD vuông tại O

Mà OM CD

Suy ra OM2 = CM . DM (hệ thức lượng trong tam giác vuông)

Mà CA = CM, DB = DM, \(OM = \frac{1}{2}AB\)

Suy ra \(CA.DB = \frac{{A{B^2}}}{4}\)

b) Vì AC // BD nên \(\frac{{AC}}{{B{\rm{D}}}} = \frac{{AN}}{{N{\rm{D}}}} = \frac{{CN}}{{NB}}\)

Mà CA = CM, DB = DM (chứng minh câu a)

Suy ra \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)

Xét tam giác ACD có \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)

Suy ra MN // CA

Mà AC AB

Do đó MN AB

c) Xét tam giác ACE vuông tại A có

\[\sin \widehat E = \frac{{CA}}{{CE}}\]

Mà CA = CM

Suy ra \[\sin \widehat E = \frac{{CM}}{{CE}}\]             (1)

Xét tam giác EBD vuông tại B có

\[\sin \widehat E = \frac{{B{\rm{D}}}}{{DE}}\]

Mà BD = DM

Suy ra \[\sin \widehat E = \frac{{DM}}{{DE}}\]                      (2)

Từ (1) và (2) suy ra \(\frac{{CM}}{{CE}} = \frac{{DM}}{{DE}}\)

d) Gọi giao điểm của MN với AB là H

Giao điểm của AN với AC và BD lần lượt là I và K

Xét (O) đường kính AB có MN AO

Mà MN cắt AO tại H

Suy ra H là trung điểm của AO

Xét tam giác DBE có MH // BD

Suy ra \(\frac{{MN}}{{DK}} = \frac{{NH}}{{BK}}\)

Do đó \(\frac{{MN}}{{NH}} = \frac{{DK}}{{BK}}\)                      (3)

Gọi giao điểm của MB và HD là E

Xét tam giác DKE có MN // KD

Suy ra \(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)

Xét tam giác BKE có MN // BK

Suy ra \(\frac{{NM}}{{BK}} = \frac{{NE}}{{EK}}\)

\(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)

Do đó \(\frac{{NH}}{{DK}} = \frac{{MN}}{{BK}}\)

Hay \(\frac{{NM}}{{MH}} = \frac{{BK}}{{DK}}\)                                  (4)

Từ (3) và (4) suy ra \(\frac{{DK}}{{BK}} = \frac{{BK}}{{DK}}\)

Do đó DK = BK, MN = NH

Hay EN đi qua trung điểm K của đoạn thẳng BD

Xét tam giác EHM có CA // MH

Suy ra \(\frac{{CI}}{{MN}} = \frac{{AI}}{{NH}}\)

Mà MN = NH

Suy ra CI = AI

Hay EN đi qua trung điểm I của đoạn thẳng AC

Vậy EN đi qua trung điểm của các đoạn thẳng AC, BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 12,811

Câu 2:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 16/08/2023 11,149

Câu 3:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem đáp án » 16/08/2023 7,133

Câu 4:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 12/07/2024 2,985

Câu 5:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 12/07/2024 2,468

Câu 6:

Tập xác định của hàm số y = logx là:

Xem đáp án » 16/08/2023 2,264

Câu 7:

Cho tam giác ABC có cạnh a, b, c thỏa mãn bc = a2.

Chứng minh rằng sinB.sinC = sin2A và hb . hc = ha2.

Xem đáp án » 16/08/2023 2,071

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store