Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng bất đẳng thức Cô – si cho 4 số ta có:
\({a^4} + {a^4} + {b^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{a^4}.{b^4}.{c^4}}} = 4{{\rm{a}}^2}bc\)
\({a^4} + {b^4} + {b^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{b^4}.{b^4}.{c^4}}} = 4{\rm{a}}{b^2}c\)
\({a^4} + {b^4} + {c^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{b^4}.{c^4}.{c^4}}} = 4{\rm{a}}b{c^2}\)
Cộng vế của các bất đẳng thức ta có:
4(a4 + b4 + c4) ≥ 4(a2bc + ab2c + abc2)
⇔ a4 + b4 + c4 ≥ abc(a + b + c)
Vậy a4 + b4 + c4 ≥ abc(a + b + c).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
về câu hỏi!