Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
n2 – n = n(n – 1)
⇔ n2 = (n – 1)n + n
Khi đó:
S = 12 + 22 + 32 + ... + n2
S = 1 + 1 . 2 + 2 . 3 + ... + (n – 1)n + n
S = [1 . 2 + 2 . 3 + ... + (n – 1)n] + (1 + 2 + ... + n)
\[{\rm{S}} = \frac{{\left( {n - 1} \right)n\left( {n + 1} \right)}}{3} + \frac{{n\left( {n + 1} \right)}}{2}\]
\[{\rm{S}} = \frac{{2\left( {n - 1} \right)n\left( {n + 1} \right) + 3n\left( {n + 1} \right)}}{6}\]
\[{\rm{S}} = \frac{{n\left( {n + 1} \right)\left( {2n - 2 + 3} \right)}}{6}\]
\[{\rm{S}} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
về câu hỏi!