Câu hỏi:
12/07/2024 475Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(y' = \frac{{ - \left( {{x^2} - 2{\rm{x}} - m} \right)}}{{{{\left( {1 - x} \right)}^2}}}\)
Để hàm số \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có 2 cực trị
⇔ y’ = 0 có hai nghiệm phân biệt
⇔ x2 – 2x – m = 0 có hai nghiệm phân biệt
Điều kiện \(\left\{ \begin{array}{l}f\left( 1 \right) = - 1 - m \ne 0\\\Delta ' = 1 + m > 0\end{array} \right. \Leftrightarrow m > - 1\)
Theo định lý Vi – ét, hai nghiệm của phương trình thỏa mãn
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - m\end{array} \right.{\rm{ }}(1)\)
Khoảng cách giữa hai điểm cực trị là
\({d^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( { - {x_1} + \frac{{m + 1}}{{1 - {x_1}}} + {x_2} - \frac{{m + 1}}{{1 - {x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {x_1}^2 - 2{{\rm{x}}_1}{x_2} + {x_2}^2 + {\left( {{x_2} - {x_1} + \frac{{\left( {m + 1} \right)\left( {1 - {x_2}} \right) - \left( {m + 1} \right)\left( {1 - {x_1}} \right)}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow \left( {{x_1}^2 + 2{{\rm{x}}_1}{x_2} + {x_2}^2} \right) - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{m - m{{\rm{x}}_2} + 1 - {x_2} - m + m{{\rm{x}}_1} - 1 + {x_1}}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - {x_1} - {x_2} + {x_1}{x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {2^2} - 4.\left( { - m} \right) + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - 2 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( { - 1 - m} \right) - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{ - {x_2} - m{{\rm{x}}_2} + {x_1} + m{{\rm{x}}_1} - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{2{x_2} + 2m{{\rm{x}}_2} - 2{x_1} - 2m{{\rm{x}}_1}}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( {1 + m} \right)}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {{x_2} - {x_1}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - 2{{\rm{x}}_1}{x_2}} \right] = 100\)
\( \Leftrightarrow 4 + 4m + 4\left( {4 + 4m} \right) = 100\)
\( \Leftrightarrow 20m + 20 = 100\)
\( \Leftrightarrow 20m = 80\)
\( \Leftrightarrow m = 4\)
Vậy m = 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!