Câu hỏi:

12/07/2024 2,018

Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)

Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\)

Do đó hàm số đồng biến trên \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)

Từ đó với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\) ta có:

f(x) > f(0) = 0

Suy ra x – sinx > 0; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)

x > sinx; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)

Với \(x \ge \frac{\pi }{2}\) thì x > 1 ≥ sinx

Vậy sinx < x với mọi x > 0

Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)

Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\)

Do đó hàm số đồng biến trên \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)

Từ đó với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\) ta có:

f(x) < f(0) = 0

Suy ra x – sinx < 0; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)

x < sinx; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)

Với \(x \le \frac{\pi }{2}\) thì \(x \le \frac{{ - \pi }}{2} < - 1 \le {\mathop{\rm s}\nolimits} {\rm{inx}}\)

Vậy sinx > x với mọi x < 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 16/08/2023 24,651

Câu 2:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 16/08/2023 12,916

Câu 3:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem đáp án » 16/08/2023 8,635

Câu 4:

Tập xác định của hàm số y = logx là:

Xem đáp án » 16/08/2023 7,685

Câu 5:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 12/07/2024 7,387

Câu 6:

Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?

Xem đáp án » 16/08/2023 3,963

Câu 7:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 12/07/2024 2,888
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay