Câu hỏi:
12/07/2024 1,088Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)
Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\)
Do đó hàm số đồng biến trên \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)
Từ đó với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\) ta có:
f(x) > f(0) = 0
Suy ra x – sinx > 0; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
⇔ x > sinx; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
Với \(x \ge \frac{\pi }{2}\) thì x > 1 ≥ sinx
Vậy sinx < x với mọi x > 0
Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)
Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\)
Do đó hàm số đồng biến trên \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)
Từ đó với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\) ta có:
f(x) < f(0) = 0
Suy ra x – sinx < 0; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)
⇔ x < sinx; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)
Với \(x \le \frac{\pi }{2}\) thì \(x \le \frac{{ - \pi }}{2} < - 1 \le {\mathop{\rm s}\nolimits} {\rm{inx}}\)
Vậy sinx > x với mọi x < 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Câu 2:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Câu 3:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Câu 5:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Câu 7:
về câu hỏi!