Tìm x biết:
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\);
b) \(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \).
Tìm x biết:
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\);
b) \(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \).
Quảng cáo
Trả lời:
Lời giải
a) \(\sqrt {{{\left( {2{\rm{x}} + 3} \right)}^2}} = 4\)
\( \Leftrightarrow \left| {2{\rm{x}} + 3} \right| = 4\)
+) Nếu 2x + 3 < 0 hay \[{\rm{x}} < \frac{{ - 3}}{2}\] thì
\(\left| {2{\rm{x}} + 3} \right| = 4\)
⇔ – 2x – 3 = 4
⇔ – 2x = 7
\( \Leftrightarrow x = \frac{{ - 7}}{2}\) (thỏa mãn)
+) Nếu 2x + 3 ≥ 0 hay \[{\rm{x}} \ge \frac{{ - 3}}{2}\] thì
\(\left| {2{\rm{x}} + 3} \right| = 4\)
⇔ 2x + 3 = 4
⇔ 2x = 1
\( \Leftrightarrow x = \frac{1}{2}\) (thỏa mãn)
Vậy \[{\rm{S}} = \left\{ {\frac{1}{2};\frac{{ - 7}}{2}} \right\}\].
b) Điều kiện xác định x ≥ 0
\(\sqrt {9{\rm{x}}} - 5\sqrt x = 6 - 4\sqrt x \)
\( \Leftrightarrow 3\sqrt {\rm{x}} - \sqrt x = 6\)
\( \Leftrightarrow 2\sqrt {\rm{x}} = 6\)
\( \Leftrightarrow \sqrt {\rm{x}} = 3\)
⇔ x = 9 (thỏa mãn)
Vậy x = 9.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Lời giải

Vì tam giác ABC vuông cân tại C
Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)
Ta có PM // BC và AC ⊥ CB
Suy ra PM ⊥ AC
Do đó tam giác APM vuông tại P
Lại có \(\widehat {PAM} = 45^\circ \)
Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)
Do đó tam giác APM vuông cân tại P
Suy ra PA = PM
Mà PA = CQ (giả thiết)
Suy ra PM = CQ
Xét tứ giác PCQM có
PM = CQ
Mà PM // CQ
Suy ra PCQM là hình bình hành
Lại có: \(\widehat C = 90^\circ \)
Suy ra PCQM là hình chữ nhật
Vậy PCQM là hình chữ nhật.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.