Câu hỏi:
27/07/2023 3,522
Chứng minh định lí sau: Nếu trong tam giác vuông có 1 cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh ấy bằng 30°.
Quảng cáo
Trả lời:
Lời giải
Trên tia đối của tia AC lấy điểm D sao cho AC = AD
Xét ∆ABC và ∆ABD có
AC = AD
\(\widehat {BAC} = \widehat {BA{\rm{D}}} = 90^\circ \)
AB là cạnh chung
Suy ra ∆ABC = ∆ABD (c.g.c)
Do đó \(\widehat {ABC} = \widehat {AB{\rm{D}}}\) (hai góc tương ứng), BC = BD (hai cạnh tương ứng)
Ta có \(AC = \frac{1}{2}BC\) (giả thiết)
AC = AD
Suy ra \(A{\rm{D}} = \frac{1}{2}BC\)
Do đó AC + AD = BC
Hay CD = BC
Mà BC = BD
Suy ra BC = BD = CD
Do đó tam giác BCD đều
Suy ra \(\widehat {DBC} = 60^\circ \)
Lại có \(\widehat {ABC} + \widehat {AB{\rm{D}}} = \widehat {CB{\rm{D}}}\), \(\widehat {ABC} = \widehat {AB{\rm{D}}}\) (chứng minh trên)
Do đó \(\widehat {ABC} = \widehat {AB{\rm{D}}} = \frac{{60^\circ }}{2} = 30^\circ \)
Vậy nếu trong tam giác vuông có 1 cạnh góc vuông bằng nửa cạnh huyền thì góc đối diện với cạnh ấy bằng 30°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau.
Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.
Lời giải
Lời giải
Đáp án đúng là: A
Tập xác định D = ℝ
Ta có:
\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)
Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1
Phương trình đường thẳng đi qua hai điểm cực trị trên là
\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)
⇔ –2x = y – 1
⇔ y = –2x + 1 (d’)
Vì d ⊥ d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)
Vậy ta chọn đáp án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.