Câu hỏi:

19/08/2025 1,485 Lưu

Cho đoạn thẳng AB có O là trung điểm và cho điểm M tùy ý. Chứng minh rằng: \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

Vì O là trung điểm của AB nên OA = OB và \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow 0 \)

Do hai vectơ \(\overrightarrow {OA} ,\overrightarrow {OB} \) ngược hướng

Nên \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = 180^\circ \)

Do đó \(\overrightarrow {OA} \cdot \overrightarrow {OB} = |\overrightarrow {OA} | \cdot |\overrightarrow {OB} | \cdot \cos (\overrightarrow {OA} ,\overrightarrow {OB} )\)

\( = OA \cdot OB \cdot \cos 180^\circ = - OA \cdot OA = - O{A^2}\)

Với điểm M tùy ý ta có

\(\overrightarrow {MA} .\overrightarrow {MB}  = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right).\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\)

\(\begin{array}{l} = {\overrightarrow {MO} ^2} + \overrightarrow {MO} \cdot \overrightarrow {OB} + \overrightarrow {OA} \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = {\left| {\overrightarrow {MO} } \right|^2} + (\overrightarrow {OA} + \overrightarrow {OB} ) \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = M{O^2} + \vec 0 \cdot \overrightarrow {MO} + \left( { - O{A^2}} \right)\end{array}\)

Vậy \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Lời giải

Media VietJack

Vì tam giác ABC vuông cân tại C

Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)

Ta có PM // BC và AC CB

Suy ra PM AC

Do đó tam giác APM vuông tại P

Lại có \(\widehat {PAM} = 45^\circ \)

Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)

Do đó tam giác APM vuông cân tại P

Suy ra PA = PM

Mà PA = CQ (giả thiết)

Suy ra PM = CQ

Xét tứ giác PCQM có

PM = CQ

Mà PM // CQ

Suy ra PCQM là hình bình hành

Lại có: \(\widehat C = 90^\circ \)

Suy ra PCQM là hình chữ nhật

Vậy PCQM là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP