Câu hỏi:

27/07/2023 1,242

Cho đoạn thẳng AB có O là trung điểm và cho điểm M tùy ý. Chứng minh rằng: \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Vì O là trung điểm của AB nên OA = OB và \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow 0 \)

Do hai vectơ \(\overrightarrow {OA} ,\overrightarrow {OB} \) ngược hướng

Nên \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right) = 180^\circ \)

Do đó \(\overrightarrow {OA} \cdot \overrightarrow {OB} = |\overrightarrow {OA} | \cdot |\overrightarrow {OB} | \cdot \cos (\overrightarrow {OA} ,\overrightarrow {OB} )\)

\( = OA \cdot OB \cdot \cos 180^\circ = - OA \cdot OA = - O{A^2}\)

Với điểm M tùy ý ta có

\(\overrightarrow {MA} .\overrightarrow {MB}  = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right).\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\)

\(\begin{array}{l} = {\overrightarrow {MO} ^2} + \overrightarrow {MO} \cdot \overrightarrow {OB} + \overrightarrow {OA} \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = {\left| {\overrightarrow {MO} } \right|^2} + (\overrightarrow {OA} + \overrightarrow {OB} ) \cdot \overrightarrow {MO} + \overrightarrow {OA} \cdot \overrightarrow {OB} \\ = M{O^2} + \vec 0 \cdot \overrightarrow {MO} + \left( { - O{A^2}} \right)\end{array}\)

Vậy \(\overrightarrow {MA} .\overrightarrow {MB} = M{O^2} - O{A^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Hai vectơ gọi là cùng phương khi giá của chúng song song hoặc trùng nhau. 

Hai vectơ cùng hướng (hoặc chiều) khi chúng là vectơ cùng phương và cùng xác định 1 hướng.

Lời giải

Lời giải

Đáp án đúng là: A

Tập xác định D = ℝ

Ta có:

\(y' = 3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\)

Suy ra A(0; 1) và B(2; –3) là hai điểm cực trị của đồ thị hàm số y = x3 – 3x2 + 1

Phương trình đường thẳng đi qua hai điểm cực trị trên là

\(\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\)

–2x = y – 1

y = –2x + 1 (d’)

Vì d d’ nên \(\left( {2m - 1} \right).\left( { - 2} \right) = - 1 \Leftrightarrow 2m - 1 = \frac{1}{2} \Leftrightarrow m = \frac{3}{4}\)

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP