Câu hỏi:
12/07/2024 2,153
Tính tổng n số hạng đầu của mỗi cấp số cộng sau:
a) 3; 1; – 1; ... với n = 10;
b) 1,2; 1,7; 2,2; ... với n = 15.
Tính tổng n số hạng đầu của mỗi cấp số cộng sau:
a) 3; 1; – 1; ... với n = 10;
b) 1,2; 1,7; 2,2; ... với n = 15.
Câu hỏi trong đề: Giải SGK Toán 11 CD Bài 2. Cấp số cộng có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Ta có: 3; 1; – 1; ... là cấp số cộng với số hạng đầu u1 = 3 và công sai d = 1 – 3 = – 2.
Khi đó u10 = 3 + (10 – 1).(– 2) = 3 + (– 18) = – 15.
Tổng của 10 số hạng đầu của cấp số cộng là:
S10 = \(\frac{{10\left[ {3 + \left( { - 15} \right)} \right]}}{2} = - 60\).
b) 1,2; 1,7; 2,2; ... với n = 15.
Ta có: 1,2; 1,7; 2,2; ... là cấp số cộng với số hạng ban đầu u1 = 1,2 và công sai d = 1,7 – 1,2 = 0,5.
Khi đó u15 = 1,2 + (15 – 1).0,5 = 8,2.
Tổng của 15 số hạng đầu của cấp số cộng là:
S15 = \(\frac{{15\left[ {1,2 + 8,2} \right]}}{2} = 70,5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
+) Theo phương án 1: Gọi (un) là dãy số tiền lương của người lao động theo phương án 1 qua mỗi năm. Dãy số (un) lập thành một cấp số cộng có số hạng đầu u1 = 120 và công sai d = 18.
Khi đó số hạng tổng quát của cấp số nhân là: un = 120 + (n – 1).18.
+) Theo phương án 2: Gọi (vn) là dãy số tiền lương của người lao động theo phương án 2 qua từng quý. Dãy số (vn) lập thành một cấp số cộng có số hạng đầu v1 = 24 và công sai d = 1,8.
Khi đó số hạng tổng quát của cấp số nhân là vn = 24 + (n – 1).1,8.
a) Khi kí hợp đồng 3 năm tương đương với 12 quý ta có:
+) Theo phương án 1: u3 = 120 + (3 – 1).18 = 156 (triệu đồng)
Tổng số tiền lương nhận được sau 3 năm là:
\({S_3} = \frac{{3.\left( {120 + 156} \right)}}{2} = 414\) (triệu đồng).
+) Theo phương án 2: u12 = 24 + (12 – 1).1,8 = 43,8.
Tổng số tiền lương nhận được sau 3 năm tương ứng với 12 quý là:
\({S_{12}} = \frac{{12.\left( {24 + 43,8} \right)}}{2} = 406,8\) (triệu đồng).
Vậy nếu được tuyển dụng vào doanh nghiệp và kí hợp đồng lao động 3 năm thì nên theo phương án 1.
b) Khi kí hợp đồng 10 năm tương đương với 40 quý ta có:
+) Theo phương án 1: u10 = 120 + (10 – 1).18 = 282 (triệu đồng)
Tổng số tiền lương nhận được sau 10 năm là:
\({S_{10}} = \frac{{10.\left( {120 + 282} \right)}}{2} = 2\,010\) (triệu đồng).
+) Theo phương án 2: u40 = 24 + (40 – 1).1,8 = 94,2.
Tổng số tiền lương nhận được sau 10 năm tương ứng với 40 quý là:
\({S_{12}} = \frac{{40.\left( {24 + 94,2} \right)}}{2} = 2\,\,364\) (triệu đồng).
Vậy nếu được tuyển dụng vào doanh nghiệp và kí hợp đồng lao động 10 năm thì nên theo phương án 2.Lời giải
Lời giải
a) Ta có: un+1 = 3 – 2(n + 1) = 3 – 2n – 2 = 1 – 2n
Suy ra un+1 – un = 1 – 2n – 3 + 3n = – 2.
Vì vậy đây là một cấp số cộng có số hạng đầu u1 = 1 và công sai d = – 2.
b) Ta có: un+1 = \(\frac{{3\left( {n + 1} \right) + 7}}{5} = \frac{{3n + 10}}{5}\)
Xét hiệu un+1 – un = \(\frac{{3n + 10}}{5} - \frac{{3n + 7}}{5} = \frac{3}{5}\)
Vì vậy đây là một cấp số cộng có số hạng đầu \({u_1} = 2\) và công sai \(d = \frac{3}{5}\).
c) Ta có: un+1 = 3n+1 = 3.3n
Xét hiệu un+1 – un = 3.3n – 3n = 2.3n với n ∈ ℕ*
Vì vậy đây không là một cấp số cộng.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Chiều cao (đơn vị: centimet) của một đứa trẻ n tuổi phát triển bình thường được cho bởi công thức:
xn = 75 + 5(n – 1).
(Nguồn: https://bibabo.vn)
a) Một đứa trẻ phát triển bình thường có chiều cao 3 năm tuổi là bao nhiêu centimet?
b) Dãy số (xn) có là một cấp số cộng không? Trung bình một năm, chiều cao mỗi đứa trẻ phát triển bình thường tăng lên bao nhiêu centimet?
Chiều cao (đơn vị: centimet) của một đứa trẻ n tuổi phát triển bình thường được cho bởi công thức:
xn = 75 + 5(n – 1).
(Nguồn: https://bibabo.vn)
a) Một đứa trẻ phát triển bình thường có chiều cao 3 năm tuổi là bao nhiêu centimet?
b) Dãy số (xn) có là một cấp số cộng không? Trung bình một năm, chiều cao mỗi đứa trẻ phát triển bình thường tăng lên bao nhiêu centimet?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.