Câu hỏi:
11/07/2024 5,909Cho cấp số nhân (un) với số hạng đầu u1 = – 5, công bội q = 2.
a) Tìm un;
b) Số – 320 là số hạng thứ bao nhiêu của cấp số nhân trên?
c) Số 160 có phải là một số hạng của cấp số nhân trên không?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có (un) là cấp số nhân có số hạng đầu u1 = – 5 và công bội q = 2 có số hạng tổng quát là: un = – 5.2n-1 với mọi n ∈ ℕ*.
b) Xét un = – 5.2n-1 = – 320
⇔ 2n-1 = 64
⇔ n – 1 = 6
⇔ n = 7.
Vậy số – 320 là số hạng thứ 7 của cấp số nhân.
c) Xét un = – 5.2n-1 = 160
⇔ 2n-1 = – 32
⇔ n – 1 = – 5
⇔ n = – 4 ∉ ℕ*
Vậy số 160 không phải là một số hạng của cấp số nhân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Vi khuẩn E. coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần.
(Nguồn: Sinh học 10, NXB Giáo dục Việt Nam, 2010)
Giả sử lúc đầu có 100 vi khuẩn E. coli.
Hỏi có bao nhiêu vi khuẩn E.coli sau 180 phút?
Câu 3:
Một gia đình mua một chiếc ô tô giá 800 triệu đồng. Trung bình sau mỗi năm sử dụng, giá trị còn lại của ô tô giảm đi 4% (so với năm trước đó).
a) Viết công thức tính giá trị của ô tô sau 1 năm, 2 năm sử dụng.
b) Viết công thức tính giá trị của ô tô sau n năm sử dụng.
c) Sau 10 năm, giá trị của ô tô ước tính còn bao nhiêu triệu đồng?
Câu 4:
Một tỉnh có 2 triệu dân vào năm 2020 với tỉ lệ tăng dân số là 1%/năm. Gọi un là số dân của tỉnh đó sau n năm. Giải sử tỉ lệ tăng dân số là không đổi.
a) Viết công thức tính số dân của tỉnh đó sau n năm kể từ năm 2020.
b) Tính số dân của tỉnh đó sau 10 năm kể từ năm 2020.
Câu 5:
Cho cấp số nhân (un) với u1 = 3, \({u_3} = \frac{{27}}{4}\).
a) Tìm công bội q và viết năm số hạng đầu của cấp số nhân trên.
b) Tính tổng 10 số hạng đầu của cấp số nhân trên.
Câu 6:
về câu hỏi!