CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M SA mà SA (SAB) nên M (SAB);

                M CM mà CM (CMN) nên M (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB (SAB);

                CN (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C SC mà SC (SBC);

               C CM mà CM (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB (SBC);

                EM (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P (ABC)

Lại có P MN mà MN (BMN) nên P (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B (BMN) và B (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP