Câu hỏi:

11/07/2024 1,163

Cho hình chóp tứ giác đều cạnh đáy bằng a, SB = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp tứ giác đều cạnh đáy bằng a, SB = 2a. Tính thể tích khối cầu ngoại tiếp (ảnh 1)

Vì S.ABCD là hình chóp đều nên đường cao SO của hình chóp cũng chính là trục của đa giác đáy 

Xét ΔBCD vuông cân tại C có  BC = CD = a

BD = \(\sqrt {B{C^2} + C{D^2}} = a\sqrt 2 \)

BO = \(\frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\)

Xét ΔSOB vuông tại O có  SB = 2a ,  BO = \(\frac{{a\sqrt 2 }}{2}\)

SO = \(\sqrt {S{B^2} - B{O^2}} = \frac{{a\sqrt {14} }}{2}\)

Trong mặt phẳng (SOB), ta vẽ trung trực của SB, đường này cắt SO tại I. Rõ ràng I là tâm mặt cầu ngoại tiếp S.ABCD

Gọi M là trung điểm của SB

SM = \(\frac{1}{2}SB = a\)

 Xét ΔSMI và ΔSOB ta có:

Chung \(\widehat S\)

\(\widehat {SMI} = \widehat {SOB} = 90^\circ \)

ΔSMI ~ΔSOB (g.g)

\(\frac{{SI}}{{SB}} = \frac{{SM}}{{SO}}\)

SI = \(\frac{{SB.SM}}{{SO}} = \frac{{2a.a}}{{\frac{{a\sqrt {14} }}{2}}} = \frac{{2a\sqrt {14} }}{7}\)

Vì SI chính là bán kính mặt cầu ngoại tiếp S.ABCD nên ta có:

Vkhối cầu = \(\frac{4}{3}\)π.SI3 = \(\frac{{64\pi \sqrt {14} }}{{147}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong một kì thi có 60% thí sinh thi đỗ. Hai bạn A và B cùng dự thi đó. Xác suất để chỉ có 1 bạn thi đỗ?

Xem đáp án » 12/07/2024 44,769

Câu 2:

Trong mặt phẳng, cho tam giác ABC có AC = 4 cm, \(\widehat A\)= 60°, \(\widehat B\)= 45°. Độ dài cạnh BC là?

Xem đáp án » 12/07/2024 32,004

Câu 3:

Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.

Xem đáp án » 12/07/2024 31,981

Câu 4:

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.

c) Chứng minh OC vuông góc với DE.

Xem đáp án » 12/07/2024 21,331

Câu 5:

Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của BC, BD. (P) là mp qua IJ và cắt AC, AD lần lượt tại N, M. Chứng minh tứ giác IJMN là hình thang. Nếu M là trung điểm AD thì tứ giác IJMN là hình gì?

Xem đáp án » 12/07/2024 20,566

Câu 6:

Hoành độ điểm đỉnh Parabol là gì?

Xem đáp án » 12/07/2024 15,613

Câu 7:

Tìm số hạng đầu tiên của cấp số nhân, biết rằng công bội là 3, tổng các số hạng là 728 và số hạng cuối là 486.

Xem đáp án » 12/07/2024 15,485