Câu hỏi:
11/07/2024 2,798
Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây cung bất kì qua H. Vẽ dây AA' vuông góc với MN. Lấy I là trung điểm của MN, BI cắt AA' tại D. Chứng minh:
a) Tứ giác DMNB là hình bình hành.
b) D là trung điểm của AA'.
Cho đường tròn tâm O đường kính AB. Gọi H là trung điểm của OB, MN là dây cung bất kì qua H. Vẽ dây AA' vuông góc với MN. Lấy I là trung điểm của MN, BI cắt AA' tại D. Chứng minh:
a) Tứ giác DMNB là hình bình hành.
b) D là trung điểm của AA'.
Quảng cáo
Trả lời:

a) Nối OI ta có:
+ Xét tam giác OMN có
OM = ON (bán kính đường tròn)
⇒ Tam giác OMN cân (tam giác có hai cạnh bên bằng nhau là tam gíac cân)
MI = NI (đề bài)
⇒ OI là trung tuyến thuộc cạnh MN
⇒ OI vuông góc MN (trong tam giác cân trung tuyến thuộc cạnh đáy đồng thời là đường cao của tam giác cân)
Ta có: AA' vuông góc MN
OI vuông góc MN (cmt)
⇒ OI // AA'
Xét tam giác ABD có:
OA = OB (bán kính đường tròn)
OI // AD (chứng minh trên OI//AA')
⇒ BI = DI (đường thẳng // cạnh đáy và đi qua trung điểm của 1 cạnh bên thì cũng đi qua trung điểm của cạnh bên còn lại)
Mà MI = NI
⇒ DMNB là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)
b) Xét tam giác OBD có
HO = HB (đề bài)
BI = DI (chứng minh trên)
⇒ HI là đường trung bình của tam giác OBD.
⇒ HI // OD
Mà HI vuông góc AA'
⇒ OD vuông góc AA'
⇒ AD = A'D (Bán kính vuông góc với dây cung thì chia đôi dây cung tại điểm cắt nhau).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “bạn A thi đỗ”, B là biến cố: “bạn B thi đỗ”, C là biến cố: “chỉ có một bạn thi đỗ”.
* Trường hợp 1: A thi đỗ, B thi không đỗ.
\(P\left( {A.\overline B } \right) = P\left( A \right).P\left( {\overline B } \right)\)= 0,6 . 0,4 = 0,24.
* Trường hợp 2: A thi không đỗ, B thi đỗ.
\(P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( B \right)\) = 0,4 . 0,6 = 0,24.
Theo quy tắc cộng xác suất, ta có
P(C) = \(P\left( {A.\overline B } \right) + P\left( {\overline A .B} \right)\)= 0,24 + 0,24 = 0,48.
Lời giải
Gọi x (km) là độ dài quãng đường AB,
y (giờ) là thời gian dự định đi đến B lúc đầu. (x > 0, y > 1)
Thời gian đi từ A đến B với vận tốc 35km là:
\(\frac{x}{{35}}\) = y + 2 ⇒ x = 35.(y + 2) (1)
Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{{50}}\) = y − 1 ⇒ x = 50.(y − 1) (2)
Từ (1) và (2) ta có:
35.(y + 2) = 50.(y − 1)
⇒ 35y + 70 = 50y – 50
⇒ y = 8
⇒ x = 35.(y + 2) = 35.10 = 350 (km)
Vậy quãng đường AB là 350km và thời gian dự định đi lúc đầu là 8 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.